Enumeration of quartic fields of small discriminant
HTML articles powered by AMS MathViewer
- by Johannes Buchmann, David Ford and Michael Pohst PDF
- Math. Comp. 61 (1993), 873-879 Request permission
Abstract:
With the mixed-type case now completed, all algebraic number fields of degree 4 with absolute discriminant $< {10^6}$ have been enumerated. Methods from the totally real and totally complex cases were used without major modification. Isomorphism of fields was determined by a method similar to one of Lenstra. The ${T_2}$ criterion of Pohst was applied to reduce the number of redundant examples.References
- Johannes Buchmann and David Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp. 52 (1989), no. 185, 161–174. MR 946599, DOI 10.1090/S0025-5718-1989-0946599-1
- D. Ford, Enumeration of totally complex quartic fields of small discriminant, Computational number theory (Debrecen, 1989) de Gruyter, Berlin, 1991, pp. 129–138. MR 1151860
- Irving Gerst and John Brillhart, On the prime divisors of polynomials, Amer. Math. Monthly 78 (1971), 250–266. MR 279071, DOI 10.2307/2317521
- H. J. Godwin, On quartic fields of signature one with small discriminant, Quart. J. Math. Oxford Ser. (2) 8 (1957), 214–222. MR 97375, DOI 10.1093/qmath/8.1.214
- H. J. Godwin, On quartic fields of signature one with small discriminant. II, Math. Comp. 42 (1984), no. 166, 707–711. MR 736462, DOI 10.1090/S0025-5718-1984-0736462-9
- A. K. Lenstra, Factorization of polynomials, Computational methods in number theory, Part I, Math. Centre Tracts, vol. 154, Math. Centrum, Amsterdam, 1982, pp. 169–198. MR 700263
- A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI 10.1007/BF01457454
- Michael Pohst, On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. Number Theory 14 (1982), no. 1, 99–117. MR 644904, DOI 10.1016/0022-314X(82)90061-0
- M. Pohst, On computing isomorphisms of equation orders, Math. Comp. 48 (1987), no. 177, 309–314. MR 866116, DOI 10.1090/S0025-5718-1987-0866116-2 I. Schur, Über die Existenz unendlich vieler Primzahlen in einigen speziellen arithmetischen Progressionen, S.-B. Berlin Math. Ges. 11 (1912), 40-50.
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Math. Comp. 61 (1993), 873-879
- MSC: Primary 11R16; Secondary 11R32, 11R80
- DOI: https://doi.org/10.1090/S0025-5718-1993-1176706-0
- MathSciNet review: 1176706