Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Analysis of the finite element variational crimes in the numerical approximation of transonic flow
HTML articles powered by AMS MathViewer

by Harald Berger and Miloslav Feistauer PDF
Math. Comp. 61 (1993), 493-521 Request permission

Abstract:

The paper presents a detailed theory of the finite element approximations of two-dimensional transonic potential flow. We consider the boundary value problem for the full potential equation in a general bounded domain $\Omega$ with mixed Dirichlet-Neumann boundary conditions. In the discretization of the problem we proceed as usual in practice: the domain $\Omega$ is approximated by a polygonal domain, conforming piecewise linear triangular elements are used, and the integrals are evaluated by numerical quadratures. Using a new version of entropy compactification of transonic flow and the theory of finite element variational crimes for nonlinear elliptic problems, we prove the convergence of approximate solutions to the exact physical solution of the continuous problem, provided its existence can be shown.
References
    B. Arlinger, Axisymmetric transonic flow computations using a multigrid method, Lecture Notes in Phys., vol. 141, Springer-Verlag, Berlin and New York, 1981, pp. 55-60. H. Berger, Finite-Element-Approximationen fĂŒr transonische Strömungen, Dr. rer. nat. Dissertation, UniversitĂ€t Stuttgart, 1989.
  • Harald Berger, A convergent finite element formulation for transonic flow, Numer. Math. 56 (1989), no. 5, 425–447. MR 1021618, DOI 10.1007/BF01396647
  • H. Berger, G. Warnecke, and W. Wendland, Finite elements for transonic potential flows, Numer. Methods Partial Differential Equations 6 (1990), no. 1, 17–42. MR 1034431, DOI 10.1002/num.1690060103
  • M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, P. Perrier, and G. Poirier, Application of optimal control and finite element methods to the calculation of transonic flows and incompressible viscous flows, Numerical methods in applied fluid dynamics (Reading, 1978) Academic Press, London-New York, 1980, pp. 203–312. MR 657398
  • Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
  • P. G. Ciarlet and P.-A. Raviart, General Lagrange and Hermite interpolation in $\textbf {R}^{n}$ with applications to finite element methods, Arch. Rational Mech. Anal. 46 (1972), 177–199. MR 336957, DOI 10.1007/BF00252458
  • J. D. Cole and E. M. Murman, Calculation of plane steady transonic flows, AIAA J. 9 (1971), 199-206. H. Deconinck, The numerical computation of transonic potential flows, Ph.D. thesis, Vriji Universiteit, Brussel, 1983. H. Deconinck and C. Hirsch, Transonic flow calculations with higher finite elements, Lecture Notes in Phys., vol. 141, Springer-Verlag, Berlin and New York, 1981, pp. 138-143.
  • Ronald J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), no. 1, 1–30. MR 719807
  • P. Doktor, On the density of smooth functions in certain subspaces of Sobolev space, Comment. Math. Univ. Carolinae 14 (1973), 609–622. MR 336317
  • Miloslav Feistauer, On irrotational flows through cascades of profiles in a layer of variable thickness, Apl. Mat. 29 (1984), no. 6, 423–458 (English, with Russian and Czech summaries). MR 767495
  • Miloslav Feistauer, On the finite element approximation of a cascade flow problem, Numer. Math. 50 (1987), no. 6, 655–684. MR 884294, DOI 10.1007/BF01398378
  • Miloslav Feistauer, Jan Mandel, and Jindƙich Nečas, Entropy regularization of the transonic potential flow problem, Comment. Math. Univ. Carolin. 25 (1984), no. 3, 431–443. MR 775562
  • M. Feistauer and J. Nečas, On the solvability of transonic potential flow problems, Z. Anal. Anwendungen 4 (1985), no. 4, 305–329 (English, with German and Russian summaries). MR 807140, DOI 10.4171/ZAA/155
  • Miloslav Feistauer and Jindƙich Nečas, Viscosity method in a transonic flow, Comm. Partial Differential Equations 13 (1988), no. 7, 775–812. MR 940958, DOI 10.1080/03605308808820560
  • Miloslav Feistauer and Jindƙich Nečas, Remarks on the solvability of transonic flow problems, Manuscripta Math. 61 (1988), no. 4, 417–428. MR 952087, DOI 10.1007/BF01258597
  • Miloslav Feistauer and Veronika SobotĂ­kovĂĄ, Finite element approximation of nonlinear elliptic problems with discontinuous coefficients, RAIRO ModĂ©l. Math. Anal. NumĂ©r. 24 (1990), no. 4, 457–500 (English, with French summary). MR 1070966, DOI 10.1051/m2an/1990240404571
  • Miloslav Feistauer, On the finite element approximation of a cascade flow problem, Numer. Math. 50 (1987), no. 6, 655–684. MR 884294, DOI 10.1007/BF01398378
  • Miloslav Feistauer and Alexander ĆœenĂ­ĆĄek, Compactness method in the finite element theory of nonlinear elliptic problems, Numer. Math. 52 (1988), no. 2, 147–163. MR 923708, DOI 10.1007/BF01398687
  • R. Glowinski, Lectures on numerical methods for nonlinear variational problems, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 65, Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1980. Notes by M. G. Vijayasundaram and M. Adimurthi. MR 597520
  • —, Numerical methods for nonlinear variational problems, Springer-Verlag, Berlin and New York, 1984. R. Glowinski and O. Pironneau, On the computation of transonic flows, Functional Analysis and Numerical Analysis (H. Fujita, ed.), Japan Soc. for the Promotion of Science, 1978, pp. 143-173. A. Jameson, Acceleration of transonic potential flow calculations on arbitrary meshes by the multiple grid method, AIAA Paper 79-1458 (1979). A. Kufner, O. John, and S. Fučík, Function spaces, Academia, Praha, 1977.
  • Jan Mandel and Jindƙich Nečas, Convergence of finite elements for transonic potential flows, SIAM J. Numer. Anal. 24 (1987), no. 5, 985–996. MR 909059, DOI 10.1137/0724064
  • R. Mani and A. J. Acosta, Quasi two-dimensional flows through a cascade, Trans. ASME Ser. A, J. Engrg. for Power 90 (1968), No. 2.
  • Cathleen S. Morawetz, On a weak solution for a transonic flow problem, Comm. Pure Appl. Math. 38 (1985), no. 6, 797–817. MR 812348, DOI 10.1002/cpa.3160380610
  • François Murat, L’injection du cĂŽne positif de $H^{-1}$ dans $W^{-1,\,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9) 60 (1981), no. 3, 309–322 (French, with English summary). MR 633007
  • J. Nečas, Les mĂ©thodes directes en thĂ©orie des Ă©quations Elliptiques, Masson, Paris, 1967. —, Ecoulements de fluide: compacitĂ© par entropie, Masson, Paris, 1988.
  • Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, DOI 10.1090/S0025-5718-1982-0645661-4
  • Gilbert Strang, Variational crimes in the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 689–710. MR 0413554
  • Alexander ĆœenĂ­ĆĄek, Discrete forms of Friedrichs’ inequalities in the finite element method, RAIRO Anal. NumĂ©r. 15 (1981), no. 3, 265–286 (English, with French summary). MR 631681, DOI 10.1051/m2an/1981150302651
  • MiloĆĄ ZlĂĄmal, Curved elements in the finite element method. I, SIAM J. Numer. Anal. 10 (1973), 229–240. MR 395263, DOI 10.1137/0710022
Similar Articles
Additional Information
  • © Copyright 1993 American Mathematical Society
  • Journal: Math. Comp. 61 (1993), 493-521
  • MSC: Primary 65N30; Secondary 65N12, 76H05, 76M10
  • DOI: https://doi.org/10.1090/S0025-5718-1993-1192967-6
  • MathSciNet review: 1192967