Periods of cusp forms and elliptic curves over imaginary quadratic fields
HTML articles powered by AMS MathViewer
- by J. E. Cremona and E. Whitley PDF
- Math. Comp. 62 (1994), 407-429 Request permission
Abstract:
In this paper we explore the arithmetic correspondence between, on the one hand, (isogeny classes of) elliptic curves E defined over an imaginary quadratic field K of class number one, and on the other hand, rational newforms F of weight two for the congruence subgroups ${\Gamma _0}(\mathfrak {n})$, where n is an ideal in the ring of integers R of K. This continues work of the first author and forms part of the Ph.D. thesis of the second author. In each case we compute numerically the value of the L-series $L(F,s)$ at $s = 1$ and compare with the value of $L(E,1)$ which is predicted by the Birch-Swinnerton-Dyer conjecture, finding agreement to several decimal places. In particular, we find that $L(F,1) = 0$ whenever $E(K)$ has a point of infinite order. Several examples are given in detail from the extensive tables computed by the authors.References
- Joe P. Buhler and Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication. II, Invent. Math. 79 (1985), no. 1, 11–29. MR 774527, DOI 10.1007/BF01388654
- Joe P. Buhler, Benedict H. Gross, and Don B. Zagier, On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank $3$, Math. Comp. 44 (1985), no. 170, 473–481. MR 777279, DOI 10.1090/S0025-5718-1985-0777279-X
- J. W. S. Cassels, Arithmetic on curves of genus $1$. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95–112. MR 163915, DOI 10.1515/crll.1962.211.95
- David A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. (2) 30 (1984), no. 3-4, 275–330. MR 767905 J. E. Cremona, Modular symbols, D.Phil. thesis, Oxford, 1981.
- J. E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compositio Math. 51 (1984), no. 3, 275–324. MR 743014
- J. E. Cremona, Addendum and errata: “Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields” [Compositio Math. 51 (1984), no. 3, 275–324; MR0743014 (85j:11063)], Compositio Math. 63 (1987), no. 2, 271–272. MR 906375
- J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 1201151
- J. E. Cremona, Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields, J. London Math. Soc. (2) 45 (1992), no. 3, 404–416. MR 1180252, DOI 10.1112/jlms/s2-45.3.404
- Solomon Friedberg, On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary level, Nagoya Math. J. 92 (1983), 1–20. MR 726137, DOI 10.1017/S0027763000020535 P. Gérardin, J. P. Labesse, Base change problem for $GL(2)$, Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., vol. 33 (Part 2), Amer. Math. Soc., Providence, RI, 1979, pp. 115-133.
- S. Kamienny, Torsion points on elliptic curves, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 371–373. MR 1058689, DOI 10.1090/S0273-0979-1990-15935-X P. F. Kurčanov, Cohomology of discrete groups and Dirichlet series connected with Jacquet-Langlands cusp forms, Math. USSR Izv. 12 (1978), 543-555.
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817 J. Elstrodt, F. Grunewald, and J. Mennicke, On the group $PS{L_2}(\mathbb {Z}[i])$, J. Arith. 1980, LMS Lecture Notes, vol. 56, Cambridge Univ. Press, 1981.
- Toshitsune Miyake, On automorphic forms on $\textrm {GL}_{2}$ and Hecke operators, Ann. of Math. (2) 94 (1971), 174–189. MR 299559, DOI 10.2307/1970741
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Joseph H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), no. 183, 339–358. MR 942161, DOI 10.1090/S0025-5718-1988-0942161-4
- Glenn Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75–106. MR 1010156, DOI 10.1007/BF01388845
- Jacques Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A238–A241 (French). MR 294345
- André Weil, Zeta-functions and Mellin transforms, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968) Oxford Univ. Press, London, 1969, pp. 409–426. MR 0262247 —, Dirichlet series and automorphic forms, Lecture Notes in Math., vol. 189, Springer-Verlag, Berlin and New York, 1971. E. Whitley, Modular symbols and elliptic curves over imaginary quadratic number fields, Ph.D. thesis, Exeter University, 1990.
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 62 (1994), 407-429
- MSC: Primary 11F67; Secondary 11F66, 11G05, 11G40
- DOI: https://doi.org/10.1090/S0025-5718-1994-1185241-6
- MathSciNet review: 1185241