## Sinc-collocation method with orthogonalization for singular Poisson-like problems

HTML articles powered by AMS MathViewer

- by Guang Yan Yin PDF
- Math. Comp.
**62**(1994), 21-40 Request permission

## Abstract:

This paper uses the Sine-collocation method to solve singular Poisson-like problems (a first- or higher-order partial derivative of the exact solution is unbounded on the boundary). A linear system is obtained which is the same as that obtained by using the Sinc-Galerkin method. With a smart choice of the stepsize and the number of the gridpoints, the orthogonalization technique is successfully applied to solve the linear system obtained, and a numerical approximation is obtained with an exponential accuracy $O(\exp ( - c{N^{\frac {1}{2}}}))$, where*N*is a truncation parameter and

*c*is a constant independent of

*N*.

## References

- E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders,
*Uniform numerical methods for problems with initial and boundary layers*, Boole Press, Dún Laoghaire, 1980. MR**610605** - Kenneth L. Bowers and John Lund,
*Numerical solution of singular Poisson problems via the sinc-Galerkin method*, SIAM J. Numer. Anal.**24**(1987), no. 1, 36–51. MR**874733**, DOI 10.1137/0724004 - John Lund,
*Symmetrization of the sinc-Galerkin method for boundary value problems*, Math. Comp.**47**(1986), no. 176, 571–588. MR**856703**, DOI 10.1090/S0025-5718-1986-0856703-9 - John Lund, Kenneth L. Bowers, and Kelly M. McArthur,
*Symmetrization of the sinc-Galerkin method with block techniques for elliptic equations*, IMA J. Numer. Anal.**9**(1989), no. 1, 29–46. MR**988788**, DOI 10.1093/imanum/9.1.29 - L. Lundin and F. Stenger,
*Cardinal-type approximations of a function and its derivatives*, SIAM J. Math. Anal.**10**(1979), no. 1, 139–160. MR**516759**, DOI 10.1137/0510016 - Ralph C. Smith, Kenneth L. Bowers, and John Lund,
*Efficient numerical solution of fourth-order problems in the modeling of flexible structures*, Computation and control (Bozeman, MT, 1988) Progr. Systems Control Theory, vol. 1, Birkhäuser Boston, Boston, MA, 1989, pp. 283–297. MR**1046858** - Frank Stenger,
*Integration formulae based on the trapezoidal formula*, J. Inst. Math. Appl.**12**(1973), 103–114. MR**381261** - Frank Stenger,
*A “sinc-Galerkin” method of solution of boundary value problems*, Math. Comp.**33**(1979), no. 145, 85–109. MR**514812**, DOI 10.1090/S0025-5718-1979-0514812-4 - Frank Stenger,
*Numerical methods based on Whittaker cardinal, or sinc functions*, SIAM Rev.**23**(1981), no. 2, 165–224. MR**618638**, DOI 10.1137/1023037
—, - Frank Stenger,
*Numerical methods based on sinc and analytic functions*, Springer Series in Computational Mathematics, vol. 20, Springer-Verlag, New York, 1993. MR**1226236**, DOI 10.1007/978-1-4612-2706-9 - A. Weiser, S. C. Eisenstat, and M. H. Schultz,
*On solving elliptic equations to moderate accuracy*, SIAM J. Numer. Anal.**17**(1980), no. 6, 908–929. MR**595453**, DOI 10.1137/0717075

*Sinc methods of approximate solution of partial differential equations*, Advances in Computer Methods for Partial Differential Equations, Philadelphia, 1984, pp. 244-251.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp.
**62**(1994), 21-40 - MSC: Primary 65N35
- DOI: https://doi.org/10.1090/S0025-5718-1994-1203738-7
- MathSciNet review: 1203738