Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Simple perfect squared squares and $2\times 1$ squared rectangles of order $25$
HTML articles powered by AMS MathViewer

by A. J. W. Duijvestijn PDF
Math. Comp. 62 (1994), 325-332 Request permission

Abstract:

In this note tables of all simple perfect squared squares and simple $2 \times 1$ perfect squared rectangles of order 25 are presented.
References
  • C. J. Bouwkamp, On the dissection of rectangles into squares. I, Nederl. Akad. Wetensch., Proc. 49 (1946), 1176–1188 = Indagationes Math. 8, 724–736 (1946). MR 19310
  • C. J. Bouwkamp, On the construction of simple perfect squared squares, Nederl. Akad. Wetensch., Proc. 50 (1947), 1296–1299 = Indagationes Math. 9, 622–625 (1947). MR 23272
  • C. J. Bouwkamp, On the dissection of rectangles into squares. II, III, Nederl. Akad. Wetensch., Proc. 50 (1947), 58–71, 72–78 = Indagationes Math. 9, 43–56, 57–63 (1947). MR 19311
  • —, On the dissection of rectangles into squares III, Kon. Nederl. Akad. Wetensch. 50 (1947), 72-78 (= Indag. Math. 9 (1947), 57-63).
  • C. J. Bouwkamp, On some new simple perfect squared squares, Discrete Math. 106/107 (1992), 67–75. A collection of contributions in honour of Jack van Lint. MR 1181898, DOI 10.1016/0012-365X(92)90531-J
  • R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940), 312–340. MR 3040, DOI 10.1215/S0012-7094-40-00718-9
  • A. J. W. Duijvestijn, Simple perfect squared squares and $2\times 1$ squared rectangles of orders $21$ and $24$, J. Combin. Theory Ser. B 59 (1993), no. 1, 26–34. MR 1234380, DOI 10.1006/jctb.1993.1051
  • Adrianus Johannes Wilhelmus Duijvestijn, Electronic computation of squared rectangles, Technische Hogeschool Eindhoven, Eindhoven, 1962. Thesis; Technische Wetenschap aan de Technische Hogeschool te Eindhoven. MR 0144492
  • —, Electronic computation of squared rectangles, Philips Research Reports 17 (1962), 523-612. —, Algorithmic calculation of the order of the automorphism group of a graph, Memorandum 221, Twente University of Technology, The Netherlands, 1978. —, A lowest order simple perfect $2 \times 1$ squared rectangle, J. Combin. Theory Ser. B 26 (1978), 372-374.
  • A. J. W. Duijvestijn, Simple perfect squared square of lowest order, J. Combin. Theory Ser. B 25 (1978), no. 2, 240–243. MR 511994, DOI 10.1016/0095-8956(78)90041-2
  • P. J. Federico, 1978, private communication.
  • P. J. Federico, Squaring rectangles and squares, Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977) Academic Press, New York-London, 1979, pp. 173–196. A historical review with annotated bibliography. MR 538045
  • W. T. Tutte, A theory of $3$-connected graphs, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 441–455. MR 0140094, DOI 10.1016/S1385-7258(61)50045-5
  • J. C. Wilson, A method for finding simple perfect squared squarings, Ph.D. thesis, University of Waterloo, 1967.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 05B99
  • Retrieve articles in all journals with MSC: 05B99
Additional Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Math. Comp. 62 (1994), 325-332
  • MSC: Primary 05B99
  • DOI: https://doi.org/10.1090/S0025-5718-1994-1208220-9
  • MathSciNet review: 1208220