## On the computation of impasse points of quasilinear differential-algebraic equations

HTML articles powered by AMS MathViewer

- by Patrick J. Rabier and Werner C. Rheinboldt PDF
- Math. Comp.
**62**(1994), 133-154 Request permission

## Abstract:

We present computational algorithms for the calculation of impasse points and higher-order singularities in quasi-linear differential-algebraic equations. Our method combines a reduction step, transforming the DAE into a singular ODE, with an augmentation procedure inspired by numerical bifurcation theory. Singularities are characterized by the vanishing of a scalar quantity that may be monitored along any trajectory. Two numerical examples with physical relevance are given.## References

- R. Abraham, J. E. Marsden, and T. Ratiu,
*Manifolds, tensor analysis, and applications*, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer-Verlag, New York, 1988. MR**960687**, DOI 10.1007/978-1-4612-1029-0 - Richard P. Brent,
*Some efficient algorithms for solving systems of nonlinear equations*, SIAM J. Numer. Anal.**10**(1973), 327–344. MR**331764**, DOI 10.1137/0710031 - K. E. Brenan, S. L. Campbell, and L. R. Petzold,
*Numerical solution of initial value problems in differential-algebraic equations*, North-Holland Publishing Co., New York, 1989. MR**1101809** - George D. Byrne and Alan C. Hindmarsh,
*Stiff ODE solvers: a review of current and coming attractions*, J. Comput. Phys.**70**(1987), no. 1, 1–62. MR**888931**, DOI 10.1016/0021-9991(87)90001-5
L. O. Chua, - Leon O. Chua and An-Chang Deng,
*Impasse points. I. Numerical aspects*, Internat. J. Circuit Theory Appl.**17**(1989), no. 2, 213–235. MR**991519**, DOI 10.1002/cta.4490170207 - Ernst Hairer, Christian Lubich, and Michel Roche,
*The numerical solution of differential-algebraic systems by Runge-Kutta methods*, Lecture Notes in Mathematics, vol. 1409, Springer-Verlag, Berlin, 1989. MR**1027594**, DOI 10.1007/BFb0093947
F. A. Potra and W. C. Rheinboldt, - Patrick J. Rabier,
*Implicit differential equations near a singular point*, J. Math. Anal. Appl.**144**(1989), no. 2, 425–449. MR**1027045**, DOI 10.1016/0022-247X(89)90344-2 - Patrick J. Rabier and Werner C. Rheinboldt,
*A general existence and uniqueness theory for implicit differential-algebraic equations*, Differential Integral Equations**4**(1991), no. 3, 563–582. MR**1097919**
—, - Werner C. Rheinboldt,
*Numerical analysis of parametrized nonlinear equations*, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 7, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR**815107** - Werner C. Rheinboldt,
*On the computation of multidimensional solution manifolds of parametrized equations*, Numer. Math.**53**(1988), no. 1-2, 165–181. MR**946374**, DOI 10.1007/BF01395883 - Werner C. Rheinboldt,
*On the existence and uniqueness of solutions of nonlinear semi-implicit differential-algebraic equations*, Nonlinear Anal.**16**(1991), no. 7-8, 647–661. MR**1097322**, DOI 10.1016/0362-546X(91)90172-W - G. W. Stewart,
*Introduction to matrix computations*, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR**0458818** - Floris Takens,
*Constrained equations; a study of implicit differential equations and their discontinuous solutions*, Rijksuniversiteit te Groningen, Mathematisch Instituut, Groningen, 1975. Report ZW-75-03. MR**0478236**

*Introduction to nonlinear networks*, McGraw-Hill, New York, 1969.

*Differential-geometric techniques for solving differential-algebraic equations*, Real-Time Integration Methods for Mechanical System Simulation (E. J. Haug and R. C. Deyo, eds.), Springer-Verlag, New York, 1991, pp. 155-192.

*A geometric treatment of implicit differential-algebraic equations*, Tech. Report TR-ICMA-162, Inst. Comput. Math. Appl., Univ. of Pittsburgh, June 1991; J. Differential Equations (in press). —,

*On impasse points of quasilinear differential-algebraic equations*, Tech. Report TR-ICMA-171, Inst. Comput. Math. Appl., Univ. of Pittsburgh, April 1992; J. Math. Anal. Appl. (in press).

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp.
**62**(1994), 133-154 - MSC: Primary 65L05; Secondary 34A09, 34A47, 58F14
- DOI: https://doi.org/10.1090/S0025-5718-1994-1208224-6
- MathSciNet review: 1208224