On perturbations of matrix pencils with real spectra
HTML articles powered by AMS MathViewer
- by Ren Cang Li PDF
- Math. Comp. 62 (1994), 231-265 Request permission
Abstract:
Perturbation bounds for the generalized eigenvalue problem of a diagonalizable matrix pencil $A - \lambda B$ with real spectrum are developed. It is shown how the chordal distances between the generalized eigenvalues and the angular distances between the generalized eigenspaces can be bounded in terms of the angular distances between the matrices. The applications of these bounds to the spectral variations of definite pencils are conducted in such a way that extra attention is paid to their peculiarities so as to derive more sophisticated perturbation bounds. Our results for generalized eigenvalues are counterparts of some celebrated theorems for the spectral variations of Hermitian matrices such as the Weyl-Lidskii theorem and the Hoffman-Wielandt theorem; and those for generalized eigenspaces are counterparts of the celebrated Davis-Kahan $\sin \theta ,\sin 2\theta$ theorems for the eigenspace variations of Hermitian matrices. The paper consists of two parts. Part I is for generalized eigenvalue perturbations, while Part II deals with generalized eigenspace perturbations.References
- Rajendra Bhatia and Chandler Davis, A bound for the spectral variation of a unitary operator, Linear and Multilinear Algebra 15 (1984), no. 1, 71–76. MR 731677, DOI 10.1080/03081088408817578
- Rajendra Bhatia, Chandler Davis, and Alan McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45–67. MR 709344, DOI 10.1016/0024-3795(83)80007-X
- C. R. Crawford, A stable generalized eigenvalue problem, SIAM J. Numer. Anal. 13 (1976), no. 6, 854–860. MR 431631, DOI 10.1137/0713067
- Chandler Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal. 7 (1970), 1–46. MR 264450, DOI 10.1137/0707001
- L. Elsner and P. Lancaster, The spectral variation of pencils of matrices, J. Comput. Math. 3 (1985), no. 3, 262–274. MR 854367
- Ludwig Elsner and Ji Guang Sun, Perturbation theorems for the generalized eigenvalue problem, Linear Algebra Appl. 48 (1982), 341–357. MR 683231, DOI 10.1016/0024-3795(82)90120-3
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37–39. MR 52379
- W. Kahan, Spectra of nearly Hermitian matrices, Proc. Amer. Math. Soc. 48 (1975), 11–17. MR 369394, DOI 10.1090/S0002-9939-1975-0369394-5
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Ren Cang Li, Perturbation theorems for the generalized eigenvalues of regular matrix pairs, Math. Numer. Sinica 11 (1989), no. 1, 10–19 (Chinese, with English summary); English transl., Chinese J. Numer. Math. Appl. 11 (1989), no. 2, 24–35. MR 1013733
- Ren Cang Li, Perturbation bounds for generalized eigenvalues. I, Math. Numer. Sinica 11 (1989), no. 2, 196–204 (Chinese, with English summary); English transl., Chinese J. Numer. Math. Appl. 11 (1989), no. 3, 34–43. MR 1015414
- Ren Cang Li, A converse to the Bauer-Fike type theorem, Linear Algebra Appl. 109 (1988), 167–178. MR 961576, DOI 10.1016/0024-3795(88)90208-X
- Ren Cang Li, On the variation of the spectra of matrix pencils, Linear Algebra Appl. 139 (1990), 147–164. MR 1071705, DOI 10.1016/0024-3795(90)90394-R —, M.S. dissertation, Computing Center, Academia Sinica, 1987.
- Ren Cang Li, Bounds on perturbations of generalized singular values and of associated subspaces, SIAM J. Matrix Anal. Appl. 14 (1993), no. 1, 195–234. MR 1199556, DOI 10.1137/0614017
- Ren Cang Li, Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils, Linear Algebra Appl. 182 (1993), 199–234. MR 1207083, DOI 10.1016/0024-3795(93)90500-N
- Ren Cang Li, A perturbation bound for definite pencils, Linear Algebra Appl. 179 (1993), 191–202. MR 1200151, DOI 10.1016/0024-3795(93)90329-M
- Xin Guo Liu, Perturbation bounds for latent values of a class of matrix polynomials, Math. Numer. Sinica 11 (1989), no. 1, 20–28 (Chinese, with English summary). MR 1013734
- L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford Ser. (2) 11 (1960), 50–59. MR 114821, DOI 10.1093/qmath/11.1.50
- G. W. Stewart, On the sensitivity of the eigenvalue problem $Ax=\lambda Bx$, SIAM J. Numer. Anal. 9 (1972), 669–686. MR 311682, DOI 10.1137/0709056
- G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev. 15 (1973), 727–764. MR 348988, DOI 10.1137/1015095
- G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Rev. 19 (1977), no. 4, 634–662. MR 461871, DOI 10.1137/1019104
- G. W. Stewart, Perturbation bounds for the definite generalized eigenvalue problem, Linear Algebra Appl. 23 (1979), 69–85. MR 520614, DOI 10.1016/0024-3795(79)90094-6
- G. W. Stewart and Ji Guang Sun, Matrix perturbation theory, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1990. MR 1061154 Ji-guang Sun, Invariant subspaces and generalized invariant subspaces. (I), (II), Math. Numer. Sinica 2 (1980), 1-13, 113-123. (Chinese)
- Ji Guang Sun, The perturbation bounds of generalized eigenvalues of a class of matrix-pairs, Math. Numer. Sinica 4 (1982), no. 1, 23–29 (Chinese, with English summary). MR 760751
- Ji Guang Sun, A note on Stewart’s theorem for definite matrix pairs, Linear Algebra Appl. 48 (1982), 331–339. MR 683230, DOI 10.1016/0024-3795(82)90119-7
- Ji Guang Sun, The perturbation bounds for eigenspaces of a definite matrix-pair, Numer. Math. 41 (1983), no. 3, 321–343. MR 712116, DOI 10.1007/BF01418329
- Ji Guang Sun, On the perturbation of the eigenvalues of a normal matrix, Math. Numer. Sinica 6 (1984), no. 3, 334–336 (Chinese, with English summary). MR 768529
- Frank Uhlig, A recurring theorem about pairs of quadratic forms and extensions: a survey, Linear Algebra Appl. 25 (1979), 219–237. MR 528727, DOI 10.1016/0024-3795(79)90020-X
- Helmut Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106–110. MR 67842, DOI 10.1090/S0002-9939-1955-0067842-9
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 62 (1994), 231-265
- MSC: Primary 15A22; Secondary 65F15, 65F35
- DOI: https://doi.org/10.1090/S0025-5718-1994-1208838-3
- MathSciNet review: 1208838