A finite difference method for symmetric positive differential equations
HTML articles powered by AMS MathViewer
- by Jinn Liang Liu PDF
- Math. Comp. 62 (1994), 105-118 Request permission
Abstract:
A finite difference method is developed for solving symmetric positive differential equations in the sense of Friedrichs. The method is applicable to partial differential equations of mixed type with more general boundary conditions. The method is shown to have a convergence rate of $O({h^{1/2}})$, h being the size of mesh grid. Some numerical results are presented for a model problem of forward-backward heat equations.References
- A. K. Aziz and J.-L. Liu, A weighted least squares method for the backward-forward heat equation, SIAM J. Numer. Anal. 28 (1991), no. 1, 156–167. MR 1083329, DOI 10.1137/0728008
- M. S. Baouendi and P. Grisvard, Sur une équation d’évolution changeant de type, J. Functional Analysis 2 (1968), 352–367 (French). MR 0252817, DOI 10.1016/0022-1236(68)90012-8
- Richard Beals, On an equation of mixed type from electron scattering theory, J. Math. Anal. Appl. 58 (1977), no. 1, 32–45. MR 492921, DOI 10.1016/0022-247X(77)90225-6 C. K. Chu, Type-insensitive finite difference schemes, Ph.D. Thesis, New York University, 1958.
- K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 100718, DOI 10.1002/cpa.3160110306
- Jerome A. Goldstein and Tapas Mazumdar, A heat equation in which the diffusion coefficient changes sign, J. Math. Anal. Appl. 103 (1984), no. 2, 533–564. MR 762573, DOI 10.1016/0022-247X(84)90145-8
- Theodore Katsanis, Numerical solution of symmetric positive differential equations, Math. Comp. 22 (1968), 763–783. MR 245214, DOI 10.1090/S0025-5718-1968-0245214-9 T. LaRosa, The propagation of an electron beam through the solar corona, Ph.D. Thesis, Dept. of Physics and Astronomy, University of Maryland, 1986.
- P. Lesaint, Finite element methods for symmetric hyperbolic equations, Numer. Math. 21 (1973/74), 244–255. MR 341902, DOI 10.1007/BF01436628
- P. Lesaint and P.-A. Raviart, Finite element collocation methods for first-order systems, Math. Comp. 33 (1979), no. 147, 891–918. MR 528046, DOI 10.1090/S0025-5718-1979-0528046-0
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- V. Vanaja and R. B. Kellogg, Iterative methods for a forward-backward heat equation, SIAM J. Numer. Anal. 27 (1990), no. 3, 622–635. MR 1041255, DOI 10.1137/0727038
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 62 (1994), 105-118
- MSC: Primary 65N06
- DOI: https://doi.org/10.1090/S0025-5718-1994-1208839-5
- MathSciNet review: 1208839