Irreducible finite integral matrix groups of degree $8$ and $10$
Author:
Bernd Souvignier
Journal:
Math. Comp. 63 (1994), 335-350
MSC:
Primary 20H15; Secondary 11E12, 20C10, 20C40
DOI:
https://doi.org/10.1090/S0025-5718-1994-1213836-X
MathSciNet review:
1213836
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The lattices of eight- and ten-dimensional Euclidean space with irreducible automorphism group or, equivalently, the conjugacy classes of these groups in $\mathrm {GL}_n(\mathbb {Z})$ for $n = 8,10$, are classified in this paper. The number of types is 52 in the case $n = 8$, and 47 in the case $n = 10$. As a consequence of this classification one has 26, resp. 46, conjugacy classes of maximal finite irreducible subgroups of $\mathrm {GL}_8(\mathbb {Z})$, resp. $\mathrm {GL}_{10}(\mathbb {Z})$. In particular, each such group is absolutely irreducible, and therefore each of the maximal finite groups of degree 8 turns up in earlier lists of classifications.
-
H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, and H. Zassenhaus, Crystallographic groups of four-dimensional space, Wiley-Interscience, New York, 1978.
H. F. Blichfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, IL, 1917.
S. I. Borewicz and I. R. Šafarevič, Zahlentheorie, Birkhäuser, Basel, 1966.
- John Cannon, A general purpose group theory program, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Springer, Berlin, 1974, pp. 204–217. Lecture Notes in Math., Vol. 372. MR 0354823
- M. Eichler, Über die Idealklassenzahl total definiter Quaternionenalgebren, Math. Z. 43 (1938), no. 1, 102–109 (German). MR 1545717, DOI https://doi.org/10.1007/BF01181088 M. Schönert (ed.), GAP: groups, algorithms and programming. Manual (version 3.1), Lehrstuhl D für Mathematik, RWTH Aachen, 1992.
- Helmut Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952 (German). MR 0049239
- Derek F. Holt and W. Plesken, Perfect groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. With an appendix by W. Hanrath; Oxford Science Publications. MR 1025760
- Heinrich Lang, Über eine Gattung elementar-arithmetischer Klasseninvarianten reell-quadratischer Zahlkörper, J. Reine Angew. Math. 233 (1968), 123–175 (German). MR 238804, DOI https://doi.org/10.1515/crll.1968.233.123
- W. Plesken, Some applications of representation theory, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 477–496. MR 1112176, DOI https://doi.org/10.1007/978-3-0348-8658-1_22
- W. Plesken and W. Hanrath, The lattices of six-dimensional Euclidean space, Math. Comp. 43 (1984), no. 168, 573–587. MR 758205, DOI https://doi.org/10.1090/S0025-5718-1984-0758205-5
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of ${\rm GL}(n, {\bf Z})$. I. The five and seven dimensional cases, Math. Comp. 31 (1977), no. 138, 536–551. MR 444789, DOI https://doi.org/10.1090/S0025-5718-1977-0444789-X
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of ${\rm GL}(n,\,{\bf Z})$. III. The nine-dimensional case, Math. Comp. 34 (1980), no. 149, 245–258. MR 551303, DOI https://doi.org/10.1090/S0025-5718-1980-0551303-7
- W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum. I, Math. Comp. 45 (1985), no. 171, 209–221, S5–S16. MR 790654, DOI https://doi.org/10.1090/S0025-5718-1985-0790654-2
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- Charles C. Sims, Computational methods in the study of permutation groups, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 169–183. MR 0257203 B. Souvignier, Irreduzible Bravaisgruppen in $\mathrm {GL}_8(\mathbb {Z})$, Diplomarbeit RWTH Aachen, 1991.
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674
Retrieve articles in Mathematics of Computation with MSC: 20H15, 11E12, 20C10, 20C40
Retrieve articles in all journals with MSC: 20H15, 11E12, 20C10, 20C40
Additional Information
Keywords:
Integral matrix groups,
Bravais groups,
integral lattices in Euclidean space
Article copyright:
© Copyright 1994
American Mathematical Society