Irreducible finite integral matrix groups of degree $8$ and $10$
HTML articles powered by AMS MathViewer
- by Bernd Souvignier PDF
- Math. Comp. 63 (1994), 335-350 Request permission
Abstract:
The lattices of eight- and ten-dimensional Euclidean space with irreducible automorphism group or, equivalently, the conjugacy classes of these groups in $\mathrm {GL}_n(\mathbb {Z})$ for $n = 8,10$, are classified in this paper. The number of types is 52 in the case $n = 8$, and 47 in the case $n = 10$. As a consequence of this classification one has 26, resp. 46, conjugacy classes of maximal finite irreducible subgroups of $\mathrm {GL}_8(\mathbb {Z})$, resp. $\mathrm {GL}_{10}(\mathbb {Z})$. In particular, each such group is absolutely irreducible, and therefore each of the maximal finite groups of degree 8 turns up in earlier lists of classifications.References
-
H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, and H. Zassenhaus, Crystallographic groups of four-dimensional space, Wiley-Interscience, New York, 1978.
H. F. Blichfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, IL, 1917.
S. I. Borewicz and I. R. Šafarevič, Zahlentheorie, Birkhäuser, Basel, 1966.
- John Cannon, A general purpose group theory program, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 204–217. MR 0354823
- M. Eichler, Über die Idealklassenzahl total definiter Quaternionenalgebren, Math. Z. 43 (1938), no. 1, 102–109 (German). MR 1545717, DOI 10.1007/BF01181088 M. Schönert (ed.), GAP: groups, algorithms and programming. Manual (version 3.1), Lehrstuhl D für Mathematik, RWTH Aachen, 1992.
- Helmut Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952 (German). MR 0049239
- Derek F. Holt and W. Plesken, Perfect groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. With an appendix by W. Hanrath; Oxford Science Publications. MR 1025760
- Heinrich Lang, Über eine Gattung elementar-arithmetischer Klasseninvarianten reell-quadratischer Zahlkörper, J. Reine Angew. Math. 233 (1968), 123–175 (German). MR 238804, DOI 10.1515/crll.1968.233.123
- W. Plesken, Some applications of representation theory, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 477–496. MR 1112176, DOI 10.1007/978-3-0348-8658-1_{2}2
- W. Plesken and W. Hanrath, The lattices of six-dimensional Euclidean space, Math. Comp. 43 (1984), no. 168, 573–587. MR 758205, DOI 10.1090/S0025-5718-1984-0758205-5
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of $\textrm {GL}(n, \textbf {Z})$. I. The five and seven dimensional cases, Math. Comp. 31 (1977), no. 138, 536–551. MR 444789, DOI 10.1090/S0025-5718-1977-0444789-X
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of $\textrm {GL}(n,\,\textbf {Z})$. III. The nine-dimensional case, Math. Comp. 34 (1980), no. 149, 245–258. MR 551303, DOI 10.1090/S0025-5718-1980-0551303-7
- W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum. I, Math. Comp. 45 (1985), no. 171, 209–221, S5–S16. MR 790654, DOI 10.1090/S0025-5718-1985-0790654-2
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- Charles C. Sims, Computational methods in the study of permutation groups, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 169–183. MR 0257203 B. Souvignier, Irreduzible Bravaisgruppen in $\mathrm {GL}_8(\mathbb {Z})$, Diplomarbeit RWTH Aachen, 1991.
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 335-350
- MSC: Primary 20H15; Secondary 11E12, 20C10, 20C40
- DOI: https://doi.org/10.1090/S0025-5718-1994-1213836-X
- MathSciNet review: 1213836