## Wavelet calculus and finite difference operators

HTML articles powered by AMS MathViewer

- by Kent McCormick and Raymond O. Wells PDF
- Math. Comp.
**63**(1994), 155-173 Request permission

## Abstract:

This paper shows that the naturally induced discrete differentiation operators induced from a wavelet-Galerkin finite-dimensional approximation to a standard function space approximates differentiation with an error of order ${\text {O}}({h^{2d + 2}})$, where*d*is the degree of the wavelet system. The degree of a wavelet system is defined as one less than the degree of the lowest-order nonvanishing moment of the fundamental wavelet. We consider in this paper compactly supported wavelets of the type introduced by Daubechies in 1988. The induced differentiation operators are described in terms of connection coefficients which are intrinsically defined functional invariants of the wavelet system (defined as ${L^2}$ inner products of derivatives of wavelet basis functions with the basis functions themselves). These connection coefficients can be explicitly computed without quadrature and they themselves have key moment-vanishing properties proved in this paper which are dependent upon the degree of the wavelet system. This is the basis for the proof of the principal results concerning the degree of approximation of the differentiation operator by the wavelet-Galerkin discrete differentiation operator.

## References

- G. Beylkin,
*On the representation of operators in bases of compactly supported wavelets*, SIAM J. Numer. Anal.**29**(1992), no. 6, 1716–1740. MR**1191143**, DOI 10.1137/0729097
Charles Chui, - Ȧke Björck and Germund Dahlquist,
*Numerical methods*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. Translated from the Swedish by Ned Anderson. MR**0368379** - Ingrid Daubechies,
*Orthonormal bases of compactly supported wavelets*, Comm. Pure Appl. Math.**41**(1988), no. 7, 909–996. MR**951745**, DOI 10.1002/cpa.3160410705 - Ingrid Daubechies,
*Ten lectures on wavelets*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1162107**, DOI 10.1137/1.9781611970104 - Philip J. Davis,
*Interpolation and approximation*, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR**0157156** - Roland Glowinski, Wayne Lawton, Michel Ravachol, and Eric Tenenbaum,
*Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension*, Computing methods in applied sciences and engineering (Paris, 1990) SIAM, Philadelphia, PA, 1990, pp. 55–120. MR**1102021**
R. Gopinath and C. S. Burrus, - Peter N. Heller, Howard L. Resnikoff, and Raymond O. Wells Jr.,
*Wavelet matrices and the representation of discrete functions*, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 15–50. MR**1161246**
A. Latto, H. L. Resnikoff, and E. Tenenbaum, - Wayne M. Lawton,
*Necessary and sufficient conditions for constructing orthonormal wavelet bases*, J. Math. Phys.**32**(1991), no. 1, 57–61. MR**1083085**, DOI 10.1063/1.529093 - Stephane G. Mallat,
*Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$*, Trans. Amer. Math. Soc.**315**(1989), no. 1, 69–87. MR**1008470**, DOI 10.1090/S0002-9947-1989-1008470-5
L. M. Milne-Thompson, - Sam Qian and John Weiss,
*Wavelets and the numerical solution of partial differential equations*, J. Comput. Phys.**106**(1993), no. 1, 155–175. MR**1214017**, DOI 10.1006/jcph.1993.1100
J. Weiss, - Raymond O. Wells Jr.,
*Parametrizing smooth compactly supported wavelets*, Trans. Amer. Math. Soc.**338**(1993), no. 2, 919–931. MR**1107031**, DOI 10.1090/S0002-9947-1993-1107031-8 - Raymond O. Wells Jr. and Xiaodong Zhou,
*Wavelet interpolation and approximate solutions of elliptic partial differential equations*, Noncompact Lie groups and some of their applications (San Antonio, TX, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 429, Kluwer Acad. Publ., Dordrecht, 1994, pp. 349–366. MR**1306537**
—,

*Wavelet theory*, Academic Press, Cambridge, MA, 1991.

*On the moments of the scaling function ø*, Proceedings of ISCAS ’92, May 1992, pp. 963-966. R. A. Gopinath, W. M. Lawton, and C. S. Burrus,

*Wavelet-Galerkin approximation of linear translation invariant operators*, Proc. ICASSP-91, IEEE, 1991, pp. 2021-2024.

*The evaluation of connection coefficients of compactly supported wavelets*, Proc. of the French-USA Workshop on Wavelets and Turbulence, June 1991 (Y. Maday, ed.), New York, 1994, Princeton University, Springer-Verlag (to appear). W. Lawton, W. Morrell, E. Tenenbaum, and J. Weiss,

*The wavelet-Galerkin method for partial differential equations*, Technical Report AD901220, Aware, Inc., 1990.

*The calculus of finite differences*, Macmillan, London, 1933.

*Wavelets and the study of two dimensional turbulence*, Proc. of the French-USA Workshop on Wavelets and Turbulence, June 1991 (Y. Maday, ed.), New York, 1994, Princeton University, Springer-Verlag (to appear).

*Wavelet solutions for the Dirichlet problem*, Technical Report 92-02, Computational Mathematics Laboratory, Rice University, 1992.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp.
**63**(1994), 155-173 - MSC: Primary 65D25; Secondary 39A12, 42C15
- DOI: https://doi.org/10.1090/S0025-5718-1994-1216261-0
- MathSciNet review: 1216261