
mathematics of computation
volume 63, number 207
july 1994, pages 351-359

COMPUTING IRREDUCIBLE REPRESENTATIONS
OF SUPERSOLVABLE GROUPS

ULRICH BAUM AND MICHAEL CLAUSEN

Abstract. Recently, it has been shown that the ordinary irreducible represen-

tations of a supersolvable group G of order n given by a power-commutator

presentation can be constructed in time 0(n2 log«). We present an improved

algorithm with running time 0(n log/?).

1. INTRODUCTION

In general, computing the ordinary irreducible representations of a given

finite group seems to be a hard problem. In their 1990 breakthrough paper

[1], Babai and Rónyai have shown that this problem can be solved in time

polynomial in the order of the group. Yet their (general-purpose) algorithm

does not appear feasible in a practical sense.

However, one can do much better for special classes of finite groups. In this

paper, we consider the class of supersolvable groups. Recall that these are finite

groups whose chief factors are cyclic of prime order. Recently, Baum [2] has

shown that the irreducible representations of supersolvable groups G, given by

a power-commutator presentation, can be constructed in time 0(|G|2log|G|).

This algorithm has been implemented and has proved quite efficient in practice.
Its main tool is the concept of symmetry-adapted representations, which will be

briefly discussed in the next section. It has been shown in [2] that the irreducible
representations of a supersolvable group adapted to a chief series are always
monomial. The proof gives rise to an efficient construction along the chief series
of the irreducible representations over any field containing a primitive eth root
of unity, where e is the exponent of the group. During the construction, no

field arithmetic is needed at all. Only symbolic calculations in the group of eth
roots of unity are required. Hence, the symbolic result is valid if interpreted

over any field containing a primitive eth root of unity. The structure of this

algorithm is basically bottom-up. However, it contains a recursive subroutine,

which turned out to be the most expensive part.

In this paper, we present an improved algorithm whose running time has

order \G\ log|G|. It is based on the same ideas as the old algorithm, but the
procedure has been completely reorganized to be purely bottom-up and nonre-

cursive.

Received by the editor October 13, 1992.

1991 Mathematics Subject Classification. Primary 20C15, 20C40; Secondary 68Q40.

© 1994 American Mathematical Society

0025-5718/94 $1.00+ $.25 per page

351

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

352 ULRICH BAUM AND MICHAEL CLAUSEN

2. Symmetry-adapted representations

In this section, we recall the concept of symmetry-adapted representations,

which will be an important tool in our construction. Let G be a finite group of

exponent e, and K a field containing a primitive eth root of unity. (According
to a theorem by R. Brauer, K is a splitting field for every subgroup of G.) Let

!T = (G = G„ > •• ■ > Go = {1}) be a chain of subgroups of G. A matrix
representation D of G over K is called ¡J -adapted if for all j, 0 < j < n ,

the following two conditions hold:

• the restriction D J. G; of D to G, is equal to a direct sum of irreducible
matrix representations of Gj ;

• equivalent irreducible constituents of D [Gj are equal.

Symmetry-adapted representations have been applied to various mathematical

and physical problems, see, e.g., [4]. In particular, the most efficient algorithms
for computing discrete Fourier transforms on finite groups are based on this
concept [2, 3].

It is easy to see that every representation of G is equivalent to a ^-adapted

representation. In our construction, y will be a chief series of the supersolv-

able group G; i.e., every G, is normal in G and all indices [G,: G/_i] =: Pi

are prime. In this case, ^-adapted representations are almost unique.

Theorem 2.1. Let ^ beachief series of the supersolvable group G, and suppose

that D and A are two equivalent irreducible and !T-adapted K-representations

of G of degree d. Then the intertwining space

Int(D, A) = {Xe Kdxd\XD(g) = A(g)Xfor all g e G}

contains a monomial matrix.

A proof can be found in [2]. This result will be the basis of our construction

described in the next section. In fact, we will see that the irreducible repre-

sentations of a supersolvable group adapted to a chief series are themselves
monomial; i.e., the representing matrices of all group elements are monomial.

3. The algorithm

Let ET = (G = G„ > G„_i > •■■ > G0 = {1}) be a chief series of the
supersolvable group G, and fix generators gx, ... , gn of G with g¡ e G,\G,_i.

For 1 < i < n, define y = (G, > G,_i > ••• > G0). Let K be a field
containing a primitive eth root of unity, where e is the exponent of G. We

will see that our construction only involves (symbolic) calculations in the group

of eth roots of unity; no general ^-arithmetic is needed. To this end, we call

a monomial matrix e-monomial if all of its nonzero entries are eth roots of

unity. A representation is called e-monomial if the representing matrices of

all group elements are e-monomial. Recall that for a representation F of a

normal subgroup N <G and an element g e G, the conjugate representation

F8 of N is defined by N 9 n >-> Fg(n) := F(g~xng).

Our algorithm works bottom-up along ¡T. At level i, 1 < i < n, it takes

the following input:

(1) SF, a full set of nonequivalent irreducible e-monomial representations

of G,_i over K suchthat ®F^grF is ^¡-X-adapted;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

IRREDUCIBLE REPRESENTATIONS OF SUPERSOLVABLE GROUPS 353

(2) For every i — 1 < j <n , a permutation n¡ of y such that Fg> ~ n}F

for all Fe!? as well as e-monomial matrices XjF e lnt(FgJ, iijF),
F s&~

and computes the following output:

(1) 2¡ , a full set of nonequivalent irreducible e-monomial representations
of G, over K such that 0D€^ Ö is ^-adapted;

(2) For every i < j < n, a permutation x¡ of 3) such that Dg¡ ~ t/Z)

for all D e 3¡ as well as e-monomial matrices Y¡b e ln\(Dg>, XjD),

De2).

Note that the input of level 1 is trivial. Level i of the algorithm consists of
two phases.

Phase 1. Computation of 3¡ . Consider F e ? and its g,-conjugate represen-
tation Fgi.

Case 1. n¡F = F, i.e., F ~ Egi. Then by Clifford Theory, there are
exactly p := p¡ pairwise nonequivalent irreducible extensions Do, ... , Dp-X

of F to G, over K satisfying Dk = xk ® D0, where 1 = x°> Xl » • • • > Xp~l
are the characters of the cyclic group G¡/G¡-X . If D is such an extension, and

X := D(gi), we necessarily have

(i) X~xF(h)X = D(g-Xhgi) = F(grxhgi) = Fg'(h) for all h e G,_,, i.e.,
X e ln\(Fg', F) and

(ii) XP = F(gf).
Conversely, it is easy to see that these two conditions are also sufficient in order
to define an extension of F to G, by D(g¡) := X.

By (i), X = c • XiF for some c e K*. Now we use (ii) to determine c and
obtain the equation

c"XfF = F(gf).
This equation has p distinct solutions Cq, ... ,cp-X in K*, which are (pe)lh

roots of unity. Thus Do, ... , Dp_x are given by

F>k(gi) ■= ckXiF.

As XiF is monomial, each Dk is also monomial and obviously ^-adapted.
Looking at the character of Dk , it is easy to see that the constants ck are even
eth roots of unity, so Dk is e-monomial. Hence, this part of the construction

(in particular the computation of ck) only involves calculations in the group of

eth roots of unity.

Case 2. iiiF ^ F, i.e., F <* Fgi. Again by Clifford Theory, the induced

representation F] G, is irreducible and (F \ G,) J. G,_i = ®pkZoFgt. As F

is e-monomial, so is F î G,. Now we have to adapt this induced represen-

tation to y. To this end, note that F8> ~ nkF and Xt := Xink-\F • --Xíf e
k i

Int(Fgi , 7tfF). Now set X := ®¿. Xk and define the representation D by

D(a) := X(F î Gi)(a)X~x for all a e G,■. Obviously, D is irreducible and

e-monomial. As each nfF e £F is y_i-adapted and

p-\
(D i Gi-¡)(b) = X(F î G¡ j Gi-X)(b)X~x = ®{i$F){b)

k=0

for all b e G,_i, D is ^-adapted.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

354 ULRICH BAUM AND MICHAEL CLAUSEN

By these two constructions, we obtain all irreducible representations of G,
up to isomorphism, and Phase 1 is complete.

During the construction in Phase 1, we also build a bipartite graph in which

F e& and D e2S are linked if and only if F is a constituent of D \ G,_i.

This "traceback" information will be be needed in the next phase.

Phase 2: Computation of x¡ and YjD . Let F e ? and i < j < n . We have

to consider the same two cases as in Phase 1.
Case 1. n ¡F = F. In Phase 1, we have computed the p extensions D =

Do, ... , Z)p_i of F, where Dk = xk 9 D• As D is an extension of F, we
have that XjD must be an extension of n¡F . Let A = An, ... , Ap_i be the

extensions of tcjF computed in Phase 1 with Ak = xk ® A. By Schur's lemma,

Xjf e lnt(DgJ, XjDk) for all k ; hence we can set Yjok '■= X]F, although we

do not know x¡Dk yet. To determine the x}Dk , observe that, for k = 0, the

matrix YjD satisfies

YjDDgJ(gi)Y-Dx = (XjD)(gl) = A,(gi) = x'(giGi-X)-A(gi)

for a unique 0 < I < p. To compute /, we only have to look at one nonzero

entry on the left side of this e-monomial matrix equation and the corresponding

entry on the right. With this /, set x¡D := A¡. Once / is known, the remaining

values XjDk can be computed by "cyclic shifts" as follows: Let 0 < a} < p be

the unique integer such that xgj — Xa' ■ (Note that üj can be directly read off

the pc-presentation, see §4.) Then for 0 < k < p , we have

D*J = (Xk 9 D)8' = (xg')k 9 D8¡ ~ xkaj 9 A/.

Hence,

XjDk = Ai+ka.moáp.

Case 2. n¡F ^ F. In Phase 1, we have computed a D e 2¡ such that

D i G,_i = (&o<k<pFk with Fk := nkF of degree /. Then XjD is the unique

Ae3S such that A J. G¡-X contains TCjF . This is already known from Phase

1. According to our construction, x¡D \ G,_i = ®o<k<P^k w*m ®k '•= nk<&

for some Oe/.
From Phase 1, we know the unique permutation o such that TijFk = Q>ak

as well as e-monomial matrices Xk := XjFk e lnt(FkgJ, <&ak).

We are looking for an e-monomial matrix Yjd e lnt(Dgj, XjD). By Schur's

lemma, YjD has the form1

YJD = O • (® CkXk)

for suitable constants ck e K*. To determine the ck, note that YjD must
satisfy the equation

(3.1) YjDD8'(gl)Yj-Dx = (T]D)(gl).

'For notational convenience, we are going to identify a permutation o G Sym({0, ... , p - 1})

with the ^/-square block permutation matrix P„ ® E¡ , where Pa is the p-square permutation

matrix corresponding to a and Ef denotes the /-square identity matrix.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

IRREDUCIBLE REPRESENTATIONS OF SUPERSOLVABLE GROUPS 355

As YjD is again uniquely determined up to a constant c e K*, we can set

c0 := 1.

According to our construction in Phase 1, there are e-monomial matrices
Ak , Bke Kf*f such that (XjD)(g¡) is a block matrix of the form

(XjD)(gi) = (0,...,p-l)-(Bo®---®Bp.x),

and D8'(gi) is a block matrix of the form

DSi(gi) = 7t'(Ao@---@Ap-X)

for some n e Sym({0, ..., p - 1}). Hence, (3.1) is equivalent to

*■ (@cKkXnk\ (®Ak\ ¡&c?xA =o-l(0, ... ,p- l)o- (<$Bok) .
\k=0) \k=t)) \k=0 / \k=0 /

Because Co = 1, we can now successively determine cno, cKiO, Note that

we obtain all ck in this way since n = o~x(0, ... , p- l)o is a p-cycle. To do

this, it is sufficient to look at just one nonzero entry of XnkAkcklXk~l and the

corresponding entry in Bak .

4. Analysis

In order to analyze our algorithm, we have to describe its input and output
more precisely.

The group G is given as a power-commutator presentation (also called an

AG-system, see [5]). This is a presentation of the form2

(gn , gn-i, ■■■ , gi \gPi = Ui,l<i<n; g~xgjxgigj = Vij ,l<i<j<n)

with primes p,, and words u¡ = g^-f ', ... , g°iA and vu = g-iJJ , ... , g\iiA .
Moreover, we require that the presentation be consistent, i.e., that every word

in the generators has a unique normal form gf¡" ■■■ g*1 with 0 < ek < pk . A

consistent pc-presentation of this kind describes a supersolvable group. More-
over, (G„ > G„_ !>•••> Gi > {1}), where G, := (gi, ... , gx) is a chief series

of G = Gn . Conversely, every supersolvable group can be described by such a

presentation.
The presentation of supersolvable groups by pc-presentations is of special

interest for our purposes. A pc-presentation already contains all the information

on the group needed in our algorithm, so no group operations are required at

all.
With respect to this presentation, a monomial irreducible representation

of the group G, will be given by the representing matrices of the generators

gi.gi.
As we have seen in the previous section, all nonzero entries of the monomial

matrices that occur in our algorithm are eth roots of unity, where e is the
exponent of G. Hence, we do not need general field arithmetic. Only symbolic
computations in the group of eth roots of unity are required. Representing this

group as Z/eZ, this just means integer arithmetic modulo e. For simplicity

of our analysis, we assume that e is known. However, this is not necessary in

2Originally, pc-presentations have been defined to present solvable groups. We use a slightly

modified form suited to the class of supersolvable groups.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

356 ULRICH BAUM AND MICHAEL CLAUSEN

practice: Just start with e = 1 and increase e by a factor of p whenever a pxh

root cannot be computed in Case 1 of our construction.

Obviously, most of the work in our algorithm consists of multiplying, invert-

ing, and copying e-monomial matrices. Choosing a suitable data structure for

e-monomial matrices is therefore vital for our algorithm's efficiency. We repre-
sent an «-square monomial matrix M in the form M = ndiag(ai, ... , a„) by

its permutation structure n e Sn and its nonzero entries ax, ... , a„ . The per-

mutation n is stored as a list n(l), ... , n(n) of integers. Under the realistic

assumption that n and e fit into one standard one-word (e.g., 32-bit) integer

on most machines, this representation uses 2« words of storage.

In order to make our analysis feasible, we are only going to count the follow-

ing operations: arithmetic operations in Z/eZ, multiplication and inversion of

permutations, and copying of e-monomial matrices. Other type of operations

implied by our algorithm such as evaluating permutations, table lookups, and
index calculations will not be counted, but it is clear that they will not affect the

order of the algorithm's running time in a reasonable implementation.

To avoid separate counting of the different kinds of operations, we express

them in terms of "basic operations" as follows, roughly reflecting the relation of

the actual times taken by the different kinds of opertions on a typical computer:

• each arithmetic operation in Z/eZ is counted as 1 basic operation;

• multiplication of two permutations in Sn or inversion of one permuta-

tion is counted as n basic operations;

• copying an n -square e-monomial matrix is counted as n basic opera-

tions.

Of course, these definitions are somewhat arbitrary, but they certainly match the

actual running times within a constant factor. Hence again, we can be confident

that our analysis determines the order of our algorithm's running time correctly.

In this model, the product of two «-square e-monomial matrices can be
computed using 2« basic operations according to the following formula:

7tdiag(ai, ... , a„) • xdiag(bx, ... , b„) = nxdiag(aT{x)bx, ... , ax{n)b„).

In a similar way, an «-square e-monomial matrix can be inverted in 2« basic

operations.
Let us now analyze level /' of our algorithm. In the sequel, p := p¡ and /

denotes the degree of the representation F .

Phase 1: Computation of 3¡ .

Case 1. n¡F = F .
XfF can be computed with at most 21ogp • 2/ = 4/log/? operations using

square-and-multiply.
F(gf') : From the pc-presentation, we know that gf' is a word of the form

get'~y ••• gex . Using square-and-multiply to compute matrix powers, we can

hence compute F(gf') = F(gi^x)ei~i ■ ■ ■ F(gx)ei with at most

2/ (i - 2 + 2^ogpk) = 4/log|G,_1| + 2f(i - 2)
\ k<i J

operations.

To obtain a solution Co of cpXfF = F(gf), it suffices to divide a single

nonzero entry of F(gf) by the corresponding entry of XfF and compute a pth

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

IRREDUCIBLE REPRESENTATIONS OF SUPERSOLVABLE GROUPS 357

root of the quotient. As computing a pth root just means an integer division

in our symbolic representation, this can be done with only 2 operations.

In order to obtain the p extensions Do, ... , Dp_x of F to G,, we only

have to compute the p matrices Dk(g¡) = cokcoXiF, where œ is a primitive
pin root of unity. This takes 2pf operations.

Since Dk [G,_i = F, the remaining representing matrices can be copied
from level /' - 1, using pf(i - 1) operations.

Altogether, Case 1 takes at most

4/log|G,|+p/(/+l) + /(2/-4) + 2

operations.

Case 2. TiiF ̂ F.
As D | G,_i = ©0<*<p KÍF > the matrices D(g^x), ... , D(gx) are direct

sums of matrices already computed in level / - 1 and can be obtained by

copying using pf(i- 1) operations.

The matrix X = 0¿ Xk , where Xk = X¡nk-iF ■ ■ ■ XiF , can be computed in

at most 2(p - 2)f + f = 2pf - 3f operations.
It remains to compute D(g¡) = X(F] Gi)(g¡)X~x. This matrix has the form

D(gi)=[®Xk\(0,...,p-l)^Ef®.-®Ef®F(gp))[@X-x\

= (0,..., p - i). (Xxx0-' e • • • e xp., x~}2 e x0F(gp)xp-^).

As in Case 1, computing F(gf) takes at most 4/log|G,_i| + 2f(i - 2) op-
erations.

The inverses of Xx, ... , Xp_x can be computed with at most 2(p - 1)/
operations. (Note that X0 is the identity matrix.)

Finally, we have to compute p products of /-square e-monomial matri-

ces to obtain D(g¿) according to the above formula. This takes at most 2pf

operations.

Altogether, Case 2 takes at most 4/log |G,_i \+pf(i+5)+f(2i-9) operations

for the p /-dimensional representations nkF of G,_i, that is,

i/log|G/_1| + /(i + 5) + £(2/-9)

operations each.

Phase 2: Computation of Xj and YjD • Let F eSF and i < j < n .
Case 1. UjF = F . For each / < / < « , we have to do the following:

The matrices Yjok = XjF (0 < k < p) are copies from level / - 1 in pf
operations.

To compute /, we have to compute one nonzero entry of YjDD8¡(gi)YjDx

and divide it by the corresponding entry of A(g¡).

First, we compute D8¡(g¡) = D(g~xg¡gj): From the pc-presentation, we

know that g~xg¡gj is a word of the form gf ■•■ gf . Hence, D8'(g¡) can be

computed in at most 4/log|G,| + 2f(i- 1) operations (see Case 1 of Phase 1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

358 ULRICH BAUM AND MICHAEL CLAUSEN

Next, we compute one nonzero entry of YjDDg'(gi)YjDx with 3 more opera-

tions.

To obtain /, we divide this entry by the corresponding entry of A(g¡) and

compute the pin root of the quotient, which is a pth root of unity. As this

just means an integer division in our symbolic representation, it takes 2 more
operations to compute /.

Now the XjDk can be obtained by "cyclic shifts", which are free of cost in
our model.

Altogether, Case 1 takes at most

4/log|(?i|+/»/ + /(2i-2) + 5

operations.

Case 2. UjF ^ F . For each i < j < n , we have to do the following:

XjD can be determined free of cost by table lookups.

Next we determine the coefficients ck, 0 < k < p. For each coefficient,

we have to compute one nonzero entry of XnkAkcklXk] and divide it by the

corresponding entry of Bak . Altogether, this takes 5p - 5 operations.
Finally, in order to obtain YjD, we have to compute c2X2, ... , cp-XXp-X.

This takes at most 2(p - 1)/ operations.

Altogether, Case 2 takes at most 2pf - 2f + 5p - 5 operations for p /-
dimensional representations of G;_i, that is,

f 5
2f-2J- + 5-f-

P P

operations each.

Altogether, we have proved the following.

Lemma 4.1. The number of operations taken to process one f-dimensional rep-
resentation of G,_i in both phases is at most

8/log \Gi\ + pf(i + 2) + f(4i - 6) + 7

for Case 1, and at most

ífloB\Gi.l\+f(i + 7) + í(2i-ll) + 5-^

for Case 2.

As the first case is obviously more expensive than the second, our worst-case

analysis will be based on Case 1. If we sum up over all representations Fe/

and use the fact that 52F€$r degF < |G,_i |, we obtain the upper bound

8|G;_1|log|G,| + |G(|(/ + 2) + |Gi_1|(4/+l)

< 4|G,-|log|G,| + \G¡\(i + 2) + \G¡\(2i + 1/2)

<4|Gi|log|G,| + 3|G/|i + 2.5|G,|

<7|G,|log|G,| + 2.5|G¿|

for the number of operations in level i of the algorithm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

IRREDUCIBLE REPRESENTATIONS OF SUPERSOLVABLE GROUPS 359

Summing up over all levels 1 < i < « , we obtain the upper bound

n n

l^\Gi\\og\Gi\ + 2.5'^\Gi\
i=i ¡=i

n n

<71og|G„|£|G;-| + 2.5£|G,-|
i=i ¿=i
n n

< 7 log |G„| £ |ö«|2'-" + 2.5 J2 \Gn\2l-n
1=1 ;=1

n-l n-l

<7|G„|log|G„|5]2-/ + 2.5|G„|5]2-''
¡=o ¡=o

<14|G„|log|G„| + 5|G„|

for the total number of operations of our algorithm, and we have proved the

following.

Theorem 4.1. 77ze ordinary irreducible representations of a supersolvable group

G can be computed from a power-commutator presentation of G with at most

14|G|log|G| + 5|G| = 0(|G|log|G|)

basic operations.

Observe that the output of our algorithm consists of 2« Y,Des degZ) integer

numbers, where 3S denotes the set of irreducible representations of G com-
puted in level « . Obviously, this is at most 2|G|log|G|. On the other hand,

this upper bound is sharp for abelian 2-groups. Although it does not prove a

lower complexity bound, this indicates that our algorithm is (in terms of the

group order) optimal up to a constant factor.

We have not yet implemented our algorithm. However, it can be expected to

run substantially faster than the old algorithm, for which some running times
are given in [2].

Bibliography

1. L. Babai and L. Rónyai, Computing irreducible representations of finite groups, Proc. 30th

IEEE Sympos. Foundations of Comput. Science, IEEE Computer Society Press, Los Alami-

tos, CA, 1989, pp. 93-98.

2. U. Baum, Existence and efficient construction of fast Fourier transforms on supersolvable

groups, Comput. Complexity 1/3 (1992), 235-256.

3. M. Clausen, Fast generalized Fourier transforms, Theoret. Comput. Sei. 67 (1989), 55-63.

4. A. Fässler and E. Stiefel, Group theoretical methods and their applications, Birkhäuser,

Boston, 1992.

5. C. R. Leedham-Green, A soluble group algorithm, Computational Group Theory (M. D.

Atkinson, ed.), Academic Press, London, 1984, pp. 85-101.

Institut für Informatik, Universität Bonn, Römerstr. 164, 53117 Bonn, Germany

E-mail address: uliQleon. cs. uni-bonn. de

E-mail address: clausenQleon. cs.uni-bonn. de

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

