## Error estimate in an isoparametric finite element eigenvalue problem

HTML articles powered by AMS MathViewer

- by M.-P. Lebaud PDF
- Math. Comp.
**63**(1994), 19-40 Request permission

## Abstract:

The aim of this paper is to obtain an eigenvalue approximation for elliptic operators defined on a domain $\Omega$ with the help of isoparametric finite elements of degree*k*. We prove that $\lambda - {\lambda _h} = O({h^{2k}})$ provided the boundary of $\Omega$ is well approximated, which is the same estimate as the one obtained in the case of conforming finite elements.

## References

- Shmuel Agmon,
*Lectures on elliptic boundary value problems*, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR**0178246** - I. Babuška and J. Osborn,
*Eigenvalue problems*, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641–787. MR**1115240** - Uday Banerjee,
*A note on the effect of numerical quadrature in finite element eigenvalue approximation*, Numer. Math.**61**(1992), no. 2, 145–152. MR**1147574**, DOI 10.1007/BF01385502 - Uday Banerjee and John E. Osborn,
*Estimation of the effect of numerical integration in finite element eigenvalue approximation*, Numer. Math.**56**(1990), no. 8, 735–762. MR**1035176**, DOI 10.1007/BF01405286 - Garrett Birkhoff, C. de Boor, B. Swartz, and B. Wendroff,
*Rayleigh-Ritz approximation by piecewise cubic polynomials*, SIAM J. Numer. Anal.**3**(1966), 188–203. MR**203926**, DOI 10.1137/0703015 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - P. G. Ciarlet and P.-A. Raviart,
*The combined effect of curved boundaries and numerical integration in isoparametric finite element methods*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 409–474. MR**0421108** - P. G. Ciarlet and P.-A. Raviart,
*Interpolation theory over curved elements, with applications to finite element methods*, Comput. Methods Appl. Mech. Engrg.**1**(1972), 217–249. MR**375801**, DOI 10.1016/0045-7825(72)90006-0 - A. H. Stroud and Don Secrest,
*Gaussian quadrature formulas*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR**0202312** - John E. Osborn,
*Spectral approximation for compact operators*, Math. Comput.**29**(1975), 712–725. MR**0383117**, DOI 10.1090/S0025-5718-1975-0383117-3 - Alexander Ženíšek,
*Discrete forms of Friedrichs’ inequalities in the finite element method*, RAIRO Anal. Numér.**15**(1981), no. 3, 265–286 (English, with French summary). MR**631681**, DOI 10.1051/m2an/1981150302651 - Miloš Zlámal,
*Curved elements in the finite element method. I*, SIAM J. Numer. Anal.**10**(1973), 229–240. MR**395263**, DOI 10.1137/0710022 - Miloš Zlámal,
*Curved elements in the finite element method. II*, SIAM J. Numer. Anal.**11**(1974), 347–362. MR**343660**, DOI 10.1137/0711031

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp.
**63**(1994), 19-40 - MSC: Primary 65N30; Secondary 65N25
- DOI: https://doi.org/10.1090/S0025-5718-1994-1226814-1
- MathSciNet review: 1226814