Carmichael’s conjecture on the Euler function is valid below $10^ {10,000,000}$
HTML articles powered by AMS MathViewer
- by Aaron Schlafly and Stan Wagon PDF
- Math. Comp. 63 (1994), 415-419 Request permission
Abstract:
Carmichael’s conjecture states that if $\phi (x) = n$, then $\phi (y) = n$ for some $y \ne x$ ($\phi$ is Euler’s totient function). We show that the conjecture is valid for all x under ${10^{10,900,000}}$. The main new idea is the application of a prime-certification technique that allows us to very quickly certify the primality of the thousands of large numbers that must divide a counterexample.References
- R. D. Carmichael, On Euler’s $\phi$-function, Bull. Amer. Math. Soc. 13 (1907), no. 5, 241–243. MR 1558451, DOI 10.1090/S0002-9904-1907-01453-2 —, The theory of numbers, Wiley, New York, 1914.
- R. D. Carmichael, Note on Euler’s $\varphi$-function, Bull. Amer. Math. Soc. 28 (1922), no. 3, 109–110. MR 1560520, DOI 10.1090/S0002-9904-1922-03504-5 P. Erdös, Some remarks on Euler’s $\phi$-function, Acta Math. 4 (1958), 10-19.
- V. L. Klee Jr., On a conjecture of Carmichael, Bull. Amer. Math. Soc. 53 (1947), 1183–1186. MR 22855, DOI 10.1090/S0002-9904-1947-08940-0
- P. Masai and A. Valette, A lower bound for a counterexample to Carmichael’s conjecture, Boll. Un. Mat. Ital. A (6) 1 (1982), no. 2, 313–316 (English, with Italian summary). MR 663298 R. Pinch, The pseudoprimes up to ${10^{13}}$ (to appear).
- Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff Jr., The pseudoprimes to $25\cdot 10^{9}$, Math. Comp. 35 (1980), no. 151, 1003–1026. MR 572872, DOI 10.1090/S0025-5718-1980-0572872-7
- Paulo Ribenboim, The book of prime number records, Springer-Verlag, New York, 1988. MR 931080, DOI 10.1007/978-1-4684-9938-4
- Stan Wagon, Carmichael’s “empirical theorem”, Math. Intelligencer 8 (1986), no. 2, 61–63. MR 832597, DOI 10.1007/BF03026838 —, Mathematica in action, Freeman, New York, 1990.
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 415-419
- MSC: Primary 11A25; Secondary 11A51, 11Y11
- DOI: https://doi.org/10.1090/S0025-5718-1994-1226815-3
- MathSciNet review: 1226815