## An error estimate of the least squares finite element method for the Stokes problem in three dimensions

HTML articles powered by AMS MathViewer

- by Ching Lung Chang PDF
- Math. Comp.
**63**(1994), 41-50 Request permission

## Abstract:

In this paper we are concerned with the Stokes problem in three dimensions (see recent works of the author and B. N. Jiang for the two-dimensional case). It is a linear system of four PDEs with velocity $\underline u$ and pressure*p*as unknowns. With the additional variable $\underline \omega = {\operatorname {curl}}\underline u$, the second-order problem is reduced to a first-order system. Considering the compatibility condition $\operatorname {div} \underline \omega = 0$, we have a system with eight first-order equations and seven unknowns. A least squares method is applied to this extended system, and also to the corresponding boundary conditions. The analysis based on works of Agmon, Douglis, and Nirenberg; Wendland; Zienkiewicz, Owen, and Niles; etc. shows that this method is stable in the

*h*-version. For instance, if we choose continuous piecewise polynomials to approximate $\underline u ,\underline \omega$, and

*p*, this method achieves optimal rates of convergence in the ${H^1}$-norms.

## References

- S. Agmon, A. Douglis, and L. Nirenberg,
*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II*, Comm. Pure Appl. Math.**17**(1964), 35–92. MR**162050**, DOI 10.1002/cpa.3160170104 - A. K. Aziz, R. B. Kellogg, and A. B. Stephens,
*Least squares methods for elliptic systems*, Math. Comp.**44**(1985), no. 169, 53–70. MR**771030**, DOI 10.1090/S0025-5718-1985-0771030-5 - A. K. Aziz and J.-L. Liu,
*A weighted least squares method for the backward-forward heat equation*, SIAM J. Numer. Anal.**28**(1991), no. 1, 156–167. MR**1083329**, DOI 10.1137/0728008 - Ivo Babuška,
*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1972/73), 179–192. MR**359352**, DOI 10.1007/BF01436561 - I. Babuška, J. T. Oden, and J. K. Lee,
*Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems*, Comput. Methods Appl. Mech. Engrg.**11**(1977), no. 2, 175–206. MR**451771**, DOI 10.1016/0045-7825(77)90058-5 - James H. Bramble and Ridgway Scott,
*Simultaneous approximation in scales of Banach spaces*, Math. Comp.**32**(1978), no. 144, 947–954. MR**501990**, DOI 10.1090/S0025-5718-1978-0501990-5 - J. H. Bramble and A. H. Schatz,
*Least squares methods for $2m$th order elliptic boundary-value problems*, Math. Comp.**25**(1971), 1–32. MR**295591**, DOI 10.1090/S0025-5718-1971-0295591-8 - F. Brezzi,
*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 129–151 (English, with French summary). MR**365287** - Franco Brezzi and Jim Douglas Jr.,
*Stabilized mixed methods for the Stokes problem*, Numer. Math.**53**(1988), no. 1-2, 225–235. MR**946377**, DOI 10.1007/BF01395886 - Graham F. Carey and B.-N. Jiang,
*Least-squares finite elements for first-order hyperbolic systems*, Internat. J. Numer. Methods Engrg.**26**(1988), no. 1, 81–93. MR**921572**, DOI 10.1002/nme.1620260106 - Ching Lung Chang and Max D. Gunzburger,
*A finite element method for first order elliptic systems in three dimensions*, Appl. Math. Comput.**23**(1987), no. 2, 171–184. MR**896976**, DOI 10.1016/0096-3003(87)90037-3 - Ching Lung Chang and Max D. Gunzburger,
*A subdomain-Galerkin/least squares method for first-order elliptic systems in the plane*, SIAM J. Numer. Anal.**27**(1990), no. 5, 1197–1211. MR**1061126**, DOI 10.1137/0727069 - Ching Lung Chang and Bo-Nan Jiang,
*An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem*, Comput. Methods Appl. Mech. Engrg.**84**(1990), no. 3, 247–255. MR**1082823**, DOI 10.1016/0045-7825(90)90079-2 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - George J. Fix, Max D. Gunzburger, and R. A. Nicolaides,
*On finite element methods of the least squares type*, Comput. Math. Appl.**5**(1979), no. 2, 87–98. MR**539567**, DOI 10.1016/0898-1221(79)90062-2 - George J. Fix and Milton E. Rose,
*A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations*, SIAM J. Numer. Anal.**22**(1985), no. 2, 250–261. MR**781319**, DOI 10.1137/0722016 - Vivette Girault and Pierre-Arnaud Raviart,
*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383**, DOI 10.1007/978-3-642-61623-5 - Bo-Nan Jiang and C. L. Chang,
*Least-squares finite elements for the Stokes problem*, Comput. Methods Appl. Mech. Engrg.**78**(1990), no. 3, 297–311. MR**1039687**, DOI 10.1016/0045-7825(90)90003-5 - Bo-Nan Jiang and Louis A. Povinelli,
*Least-squares finite element method for fluid dynamics*, Comput. Methods Appl. Mech. Engrg.**81**(1990), no. 1, 13–37. MR**1071091**, DOI 10.1016/0045-7825(90)90139-D - Carlo Miranda,
*Partial differential equations of elliptic type*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR**0284700** - P. Neittaanmäki and J. Saranen,
*Finite element approximation of vector fields given by curl and divergence*, Math. Methods Appl. Sci.**3**(1981), no. 3, 328–335. MR**657301**, DOI 10.1002/mma.1670030124 - Roger Temam,
*Navier-Stokes equations and nonlinear functional analysis*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR**764933** - W. L. Wendland,
*Elliptic systems in the plane*, Monographs and Studies in Mathematics, vol. 3, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR**518816**
O. C. Zienkiewicz,

*The finite element method*, Vol. 1, 4th ed., McGraw-Hill, New York, 1989. O. C. Zienkiewicz, D. R. J. Owen, and K. Niles,

*Least-squares finite element for elasto-static problems—use of reduced integration*, Internat. J. Numer. Methods Engrg.

**8**(1974), 341-358.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp.
**63**(1994), 41-50 - MSC: Primary 65N15; Secondary 65N30, 76D07, 76M10
- DOI: https://doi.org/10.1090/S0025-5718-1994-1234425-7
- MathSciNet review: 1234425