Acceleration of convergence of a family of logarithmically convergent sequences
HTML articles powered by AMS MathViewer
- by Andrew H. Van Tuyl PDF
- Math. Comp. 63 (1994), 229-246 Request permission
Abstract:
The asymptotic behavior of several sequence transformations is investigated as $n \to \infty$ when applied to a certain family of logarithmically convergent sequences. The transformations considered are the iterations of the transformations $e_1^{(s)}({A_n})$ of Shanks and ${W_n}$ of Lubkin, the $\theta$-algorithm of Brezinski, the Levin u-and v-transforms, and generalizations of the $\rho$-algorithm and the Neville table. Computational results are given for both real and complex sequences.References
-
P. Bjørstad, G. Dahlquist, and E. Grosse, Extrapolation of asymptotic expansions by a modified Aitken ${\delta ^2}$-formula, BIT 8 (1981), 56-65.
- C. Brezinski, Études sur les $\varepsilon$- et $\rho$-algorithmes, Numer. Math. 17 (1971), 153–162 (French, with English summary). MR 286242, DOI 10.1007/BF01406003 —, Accélération de suites à convergence logarithmique, C. R. Acad. Sci. Paris Ser A-B 273 (1971), A727-A730.
- Claude Brezinski, Some new convergence acceleration methods, Math. Comp. 39 (1982), no. 159, 133–145. MR 658218, DOI 10.1090/S0025-5718-1982-0658218-6
- Theodore Fessler, William F. Ford, and David A. Smith, HURRY: an acceleration algorithm for scalar sequences and series, ACM Trans. Math. Software 9 (1983), no. 3, 346–354. MR 791970, DOI 10.1145/356044.356051
- William F. Ford and Avram Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J. Numer. Anal. 24 (1987), no. 5, 1212–1232. MR 909075, DOI 10.1137/0724080
- C. Domb and M. S. Green (eds.), Phase transitions and critical phenomena. Vol. 3: Series expansions for lattice models, Academic Press, London-New York, 1974. MR 0353911
- C. Hunter and B. Guerrieri, Deducing the properties of singularities of functions from their Taylor series coefficients, SIAM J. Appl. Math. 39 (1980), no. 2, 248–263. MR 588498, DOI 10.1137/0139022
- David Levin, Development of non-linear transformations of improving convergence of sequences, Internat. J. Comput. Math. 3 (1973), 371–388. MR 359261, DOI 10.1080/00207167308803075
- David Levin and Avram Sidi, Two new classes of nonlinear transformations for accelerating the convergence of infinite integrals and series, Appl. Math. Comput. 9 (1981), no. 3, 175–215. MR 650681, DOI 10.1016/0096-3003(81)90028-X
- Samuel Lubkin, A method of summing infinite series, J. Research Nat. Bur. Standards 48 (1952), 228–254. MR 0051576, DOI 10.6028/jres.048.032
- Naoki Osada, A convergence acceleration method for some logarithmically convergent sequences, SIAM J. Numer. Anal. 27 (1990), no. 1, 178–189. MR 1034928, DOI 10.1137/0727012
- Daniel Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and Phys. 34 (1955), 1–42. MR 68901, DOI 10.1002/sapm19553411
- Avram Sidi, Convergence properties of some nonlinear sequence transformations, Math. Comp. 33 (1979), no. 145, 315–326. MR 514827, DOI 10.1090/S0025-5718-1979-0514827-6
- Avram Sidi, Analysis of convergence of the $T$-transformation for power series, Math. Comp. 35 (1980), no. 151, 833–850. MR 572860, DOI 10.1090/S0025-5718-1980-0572860-0
- David A. Smith and William F. Ford, Acceleration of linear and logarithmic convergence, SIAM J. Numer. Anal. 16 (1979), no. 2, 223–240. MR 526486, DOI 10.1137/0716017
- David A. Smith and William F. Ford, Numerical comparisons of nonlinear convergence accelerators, Math. Comp. 38 (1982), no. 158, 481–499. MR 645665, DOI 10.1090/S0025-5718-1982-0645665-1 A. Van Tuyl, Application of methods for acceleration of convergence to the calculation of singularities of transonic flows, Padé Approximants Method and its Applications to Mechanics, Lecture Notes in Phys., No. 47, Springer-Verlag, Berlin, 1976, 209-223.
- Jet Wimp, Some transformations of monotone sequences, Math. Comp. 26 (1972), 251–254. MR 303674, DOI 10.1090/S0025-5718-1972-0303674-X
- J. Wimp, Toeplitz arrays, linear sequence transformations and orthogonal polynomials, Numer. Math. 23 (1974), 1–17. MR 359260, DOI 10.1007/BF01409986
- P. Wynn, On a device for computing the $e_m(S_n)$ tranformation, Math. Tables Aids Comput. 10 (1956), 91–96. MR 84056, DOI 10.1090/S0025-5718-1956-0084056-6
- P. Wynn, On a procrustean technique for the numerical transformation of slowly convergent sequences and series, Proc. Cambridge Philos. Soc. 52 (1956), 663–671. MR 81979, DOI 10.1017/S030500410003173X
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 229-246
- MSC: Primary 40A25; Secondary 65B05
- DOI: https://doi.org/10.1090/S0025-5718-1994-1234428-2
- MathSciNet review: 1234428