Acceleration of convergence of a family of logarithmically convergent sequences
HTML articles powered by AMS MathViewer
 by Andrew H. Van Tuyl PDF
 Math. Comp. 63 (1994), 229246 Request permission
Abstract:
The asymptotic behavior of several sequence transformations is investigated as $n \to \infty$ when applied to a certain family of logarithmically convergent sequences. The transformations considered are the iterations of the transformations $e_1^{(s)}({A_n})$ of Shanks and ${W_n}$ of Lubkin, the $\theta$algorithm of Brezinski, the Levin uand vtransforms, and generalizations of the $\rho$algorithm and the Neville table. Computational results are given for both real and complex sequences.References

P. Bjørstad, G. Dahlquist, and E. Grosse, Extrapolation of asymptotic expansions by a modified Aitken ${\delta ^2}$formula, BIT 8 (1981), 5665.
 C. Brezinski, Études sur les $\varepsilon$ et $\rho$algorithmes, Numer. Math. 17 (1971), 153–162 (French, with English summary). MR 286242, DOI 10.1007/BF01406003 —, Accélération de suites à convergence logarithmique, C. R. Acad. Sci. Paris Ser AB 273 (1971), A727A730.
 Claude Brezinski, Some new convergence acceleration methods, Math. Comp. 39 (1982), no. 159, 133–145. MR 658218, DOI 10.1090/S00255718198206582186
 Theodore Fessler, William F. Ford, and David A. Smith, HURRY: an acceleration algorithm for scalar sequences and series, ACM Trans. Math. Software 9 (1983), no. 3, 346–354. MR 791970, DOI 10.1145/356044.356051
 William F. Ford and Avram Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J. Numer. Anal. 24 (1987), no. 5, 1212–1232. MR 909075, DOI 10.1137/0724080
 C. Domb and M. S. Green (eds.), Phase transitions and critical phenomena. Vol. 3: Series expansions for lattice models, Academic Press, LondonNew York, 1974. MR 0353911
 C. Hunter and B. Guerrieri, Deducing the properties of singularities of functions from their Taylor series coefficients, SIAM J. Appl. Math. 39 (1980), no. 2, 248–263. MR 588498, DOI 10.1137/0139022
 David Levin, Development of nonlinear transformations of improving convergence of sequences, Internat. J. Comput. Math. 3 (1973), 371–388. MR 359261, DOI 10.1080/00207167308803075
 David Levin and Avram Sidi, Two new classes of nonlinear transformations for accelerating the convergence of infinite integrals and series, Appl. Math. Comput. 9 (1981), no. 3, 175–215. MR 650681, DOI 10.1016/00963003(81)90028X
 Samuel Lubkin, A method of summing infinite series, J. Research Nat. Bur. Standards 48 (1952), 228–254. MR 0051576, DOI 10.6028/jres.048.032
 Naoki Osada, A convergence acceleration method for some logarithmically convergent sequences, SIAM J. Numer. Anal. 27 (1990), no. 1, 178–189. MR 1034928, DOI 10.1137/0727012
 Daniel Shanks, Nonlinear transformations of divergent and slowly convergent sequences, J. Math. and Phys. 34 (1955), 1–42. MR 68901, DOI 10.1002/sapm19553411
 Avram Sidi, Convergence properties of some nonlinear sequence transformations, Math. Comp. 33 (1979), no. 145, 315–326. MR 514827, DOI 10.1090/S00255718197905148276
 Avram Sidi, Analysis of convergence of the $T$transformation for power series, Math. Comp. 35 (1980), no. 151, 833–850. MR 572860, DOI 10.1090/S00255718198005728600
 David A. Smith and William F. Ford, Acceleration of linear and logarithmic convergence, SIAM J. Numer. Anal. 16 (1979), no. 2, 223–240. MR 526486, DOI 10.1137/0716017
 David A. Smith and William F. Ford, Numerical comparisons of nonlinear convergence accelerators, Math. Comp. 38 (1982), no. 158, 481–499. MR 645665, DOI 10.1090/S00255718198206456651 A. Van Tuyl, Application of methods for acceleration of convergence to the calculation of singularities of transonic flows, Padé Approximants Method and its Applications to Mechanics, Lecture Notes in Phys., No. 47, SpringerVerlag, Berlin, 1976, 209223.
 Jet Wimp, Some transformations of monotone sequences, Math. Comp. 26 (1972), 251–254. MR 303674, DOI 10.1090/S0025571819720303674X
 J. Wimp, Toeplitz arrays, linear sequence transformations and orthogonal polynomials, Numer. Math. 23 (1974), 1–17. MR 359260, DOI 10.1007/BF01409986
 P. Wynn, On a device for computing the $e_m(S_n)$ tranformation, Math. Tables Aids Comput. 10 (1956), 91–96. MR 84056, DOI 10.1090/S00255718195600840566
 P. Wynn, On a procrustean technique for the numerical transformation of slowly convergent sequences and series, Proc. Cambridge Philos. Soc. 52 (1956), 663–671. MR 81979, DOI 10.1017/S030500410003173X
Additional Information
 © Copyright 1994 American Mathematical Society
 Journal: Math. Comp. 63 (1994), 229246
 MSC: Primary 40A25; Secondary 65B05
 DOI: https://doi.org/10.1090/S00255718199412344282
 MathSciNet review: 1234428