An error estimate for finite volume methods for multidimensional conservation laws
HTML articles powered by AMS MathViewer
- by Bernardo Cockburn, Frédéric Coquel and Philippe LeFloch PDF
- Math. Comp. 63 (1994), 77-103 Request permission
Abstract:
In this paper, an ${L^\infty }({L^1})$-error estimate for a class of finite volume methods for the approximation of scalar multidimensional conservation laws is obtained. These methods can be formally high-order accurate and are defined on general triangulations. The error is proven to be of order ${h^{1/4}}$, where h represents the "size" of the mesh, via an extension of Kuznetsov approximation theory for which no estimate of the total variation and of the modulus of continuity in time are needed. The result is new even for the finite volume method constructed from monotone numerical flux functions.References
- Gui Qiang Chen, Qiang Du, and Eitan Tadmor, Spectral viscosity approximations to multidimensional scalar conservation laws, Math. Comp. 61 (1993), no. 204, 629–643. MR 1185240, DOI 10.1090/S0025-5718-1993-1185240-3 G.-Q. Chen and Ph. LeFloch, Entropy flux-splittings for hyperbolic conservation laws. Part 1: general framework, submitted to Comm. Pure Appl. Math., in preparation. —, Entropy flux-splittings for hyperbolic conservation laws. Part 2: Gas dynamics equations, in preparation.
- I-Liang Chern, Stability theorem and truncation error analysis for the Glimm scheme and for a front tracking method for flows with strong discontinuities, Comm. Pure Appl. Math. 42 (1989), no. 6, 815–844. MR 1003436, DOI 10.1002/cpa.3160420606
- Bernardo Cockburn, Quasimonotone schemes for scalar conservation laws. I, SIAM J. Numer. Anal. 26 (1989), no. 6, 1325–1341. MR 1025091, DOI 10.1137/0726077
- Bernardo Cockburn, Quasimonotone schemes for scalar conservation laws. II, III, SIAM J. Numer. Anal. 27 (1990), no. 1, 247–258, 259–276. MR 1034933, DOI 10.1137/0727017 —, The quasi-monotone schemes for scalar conservation laws. III, SIAM J. Numer. Anal. 27 (1990), 259-276.
- Bernardo Cockburn, On the continuity in $\textrm {BV}(\Omega )$ of the $L^2$-projection into finite element spaces, Math. Comp. 57 (1991), no. 196, 551–561. MR 1094943, DOI 10.1090/S0025-5718-1991-1094943-9
- B. Cockburn, F. Coquel, and P. G. LeFloch, Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal. 32 (1995), no. 3, 687–705. MR 1335651, DOI 10.1137/0732032
- Bernardo Cockburn and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52 (1989), no. 186, 411–435. MR 983311, DOI 10.1090/S0025-5718-1989-0983311-4
- Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp. 54 (1990), no. 190, 545–581. MR 1010597, DOI 10.1090/S0025-5718-1990-1010597-0 B. Cockburn and C.-W. Shu, The Runge-Kutta local projection ${P^1}$ discontinuous Galerkin finite element method for scalar conservation laws, ICASE Report No. 91-32, 1991.
- Frédéric Coquel and Philippe LeFloch, Convergence de schémas aux différences finies pour des lois de conservation à plusieurs dimensions d’espace, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 455–460 (French, with English summary). MR 1046532
- Frédéric Coquel and Philippe LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach, Math. Comp. 57 (1991), no. 195, 169–210. MR 1079010, DOI 10.1090/S0025-5718-1991-1079010-2
- Frédéric Coquel and Philippe LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory, SIAM J. Numer. Anal. 30 (1993), no. 3, 675–700. MR 1220646, DOI 10.1137/0730033
- Michael G. Crandall and Andrew Majda, Monotone difference approximations for scalar conservation laws, Math. Comp. 34 (1980), no. 149, 1–21. MR 551288, DOI 10.1090/S0025-5718-1980-0551288-3
- R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), no. 1, 27–70. MR 684413, DOI 10.1007/BF00251724
- Ronald J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), no. 3, 223–270. MR 775191, DOI 10.1007/BF00752112
- Jonathan B. Goodman and Randall J. LeVeque, On the accuracy of stable schemes for $2$D scalar conservation laws, Math. Comp. 45 (1985), no. 171, 15–21. MR 790641, DOI 10.1090/S0025-5718-1985-0790641-4
- A. Harten, J. M. Hyman, and P. D. Lax, On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math. 29 (1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR 413526, DOI 10.1002/cpa.3160290305
- Amiram Harten, Peter D. Lax, and Bram van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35–61. MR 693713, DOI 10.1137/1025002 D. Hoff and J.S. Smoller, Error bounds for the Glimm scheme for a scalar conservation law, Trans. Amer. Math. Soc. 289 (1988), 611-642.
- Thomas Y. Hou and Philippe G. LeFloch, Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comp. 62 (1994), no. 206, 497–530. MR 1201068, DOI 10.1090/S0025-5718-1994-1201068-0
- Claes Johnson and Anders Szepessy, On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp. 49 (1987), no. 180, 427–444. MR 906180, DOI 10.1090/S0025-5718-1987-0906180-5 —, A posteriori error estimate for a finite element method, Preprint (1993). S.N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR Sb. 10 (1970), 217-243. —, On the methods of construction of the general solution of the Cauchy problem for first order quasilinear equations, Uspehi Mat. Nauk 20 (1965), 112-118. (Russian) N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Comput. Math. and Math. Phys. 16 (1976), 105-119. —, On stable methods for solving nonlinear first-order partial differential equations in the class of discontinuous solutions, Topics in Numerical Analysis III (Proc. Roy. Irish Acad. Conf.), Trinity College, Dublin, 1976, pp. 183-192.
- P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. MR 93653, DOI 10.1002/cpa.3160100406 —, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, Philadelphia, PA, 1973. Ph. LeFloch, Convergence des méthodes de volumes finis monotones pour les lois de conservation scalaires, Communication to Ecole CEA-EDF-INRIA, Meeting on finite volume methods, October 1992 (unpublished notes). Ph. LeFloch and J.G. Liu, Entropy and monotonicity consistent EMO schemes for conservation laws, in preparation.
- Bradley J. Lucier, Error bounds for the methods of Glimm, Godunov and LeVeque, SIAM J. Numer. Anal. 22 (1985), no. 6, 1074–1081. MR 811184, DOI 10.1137/0722064
- Bradley J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (1986), no. 173, 59–69. MR 815831, DOI 10.1090/S0025-5718-1986-0815831-4
- Bradley J. Lucier, On nonlocal monotone difference schemes for scalar conservation laws, Math. Comp. 47 (1986), no. 175, 19–36. MR 842121, DOI 10.1090/S0025-5718-1986-0842121-6
- Haim Nessyahu and Eitan Tadmor, The convergence rate of approximate solutions for nonlinear scalar conservation laws, SIAM J. Numer. Anal. 29 (1992), no. 6, 1505–1519. MR 1191133, DOI 10.1137/0729087
- Stanley Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal. 21 (1984), no. 2, 217–235. MR 736327, DOI 10.1137/0721016
- Stanley Osher and Richard Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comp. 41 (1983), no. 164, 321–336. MR 717689, DOI 10.1090/S0025-5718-1983-0717689-8
- Stanley Osher and Eitan Tadmor, On the convergence of difference approximations to scalar conservation laws, Math. Comp. 50 (1988), no. 181, 19–51. MR 917817, DOI 10.1090/S0025-5718-1988-0917817-X
- Richard Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp. 40 (1983), no. 161, 91–106. MR 679435, DOI 10.1090/S0025-5718-1983-0679435-6
- Richard Sanders, Finite difference techniques for nonlinear hyperbolic conservation laws, Large-scale computations in fluid mechanics, Part 2 (La Jolla, Calif., 1983) Lectures in Appl. Math., vol. 22, Amer. Math. Soc., Providence, RI, 1985, pp. 209–220. MR 818789
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
- Anders Szepessy, Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions, Math. Comp. 53 (1989), no. 188, 527–545. MR 979941, DOI 10.1090/S0025-5718-1989-0979941-6
- A. Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 6, 749–782 (English, with French summary). MR 1135992, DOI 10.1051/m2an/1991250607491
- Eitan Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp. 43 (1984), no. 168, 369–381. MR 758189, DOI 10.1090/S0025-5718-1984-0758189-X —, Semi-discrete approximations to nonlinear systems of conservation laws; consistency and ${L^\infty }$ imply convergence, ICASE Report 88-41 (1988).
- Eitan Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM J. Numer. Anal. 28 (1991), no. 4, 891–906. MR 1111445, DOI 10.1137/0728048 J.P. Vila, Problèmes nonlinéaires appliqués, Ecoles CEA-EDF-INRIA, Clamart, France, 1993.
- A. I. Vol′pert, Spaces $\textrm {BV}$ and quasilinear equations, Mat. Sb. (N.S.) 73 (115) (1967), 255–302 (Russian). MR 0216338
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 77-103
- MSC: Primary 65M15; Secondary 35L65, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-1994-1240657-4
- MathSciNet review: 1240657