A generalized sampling theorem for locally compact abelian groups
HTML articles powered by AMS MathViewer
- by Adel Faridani PDF
- Math. Comp. 63 (1994), 307-327 Request permission
Abstract:
We present a sampling theorem for locally compact abelian groups. The sampling sets are finite unions of cosets of a closed subgroup. This generalizes the well-known case of nonequidistant but periodic sampling on the real line. For nonbandlimited functions an ${L_1}$-type estimate for the aliasing error is given. We discuss the application of the theorem to a class of sampling sets in ${{\mathbf {R}}^s}$, give a general algorithm for a computer implementation, present a detailed description of the implementation for the s-dimensional torus group, and point out connections to lattice rules for numerical integration.References
- John J. Benedetto, Irregular sampling and frames, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 445–507. MR 1161260
- Gordon H. Bradley, Algorithms for Hermite and Smith normal matrices and linear Diophantine equations, Math. Comp. 25 (1971), 897–907. MR 301909, DOI 10.1090/S0025-5718-1971-0301909-X P. L. Butzer and G. Hinsen, Two-dimensional nonuniform sampling expansions-an iterative approach. I, II, Appl. Anal. 32 (1989), 53-67, 69-85.
- P. L. Butzer, W. Splettstösser, and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein. 90 (1988), no. 1, 70. MR 928745 K. F. Cheung and R. J. Marks II, Imaging sampling below the Nyquist density without aliasing, J. Opt. Soc. Amer. A 7 (1990), 92-105.
- Kwan F. Cheung, A multidimensional extension of Papoulis’ generalized sampling expansion with the application in minimum density sampling, Advanced topics in Shannon sampling and interpolation theory, Springer Texts Electrical Engrg., Springer, New York, 1993, pp. 85–119. MR 1221746
- L. Desbat, Efficient sampling on coarse grids in tomography, Inverse Problems 9 (1993), no. 2, 251–269. MR 1214287
- Adel Faridani, An application of a multidimensional sampling theorem to computed tomography, Integral geometry and tomography (Arcata, CA, 1989) Contemp. Math., vol. 113, Amer. Math. Soc., Providence, RI, 1990, pp. 65–80. MR 1108645, DOI 10.1090/conm/113/1108645
- Hans G. Feichtinger and Karlheinz Gröchenig, Irregular sampling theorems and series expansions of band-limited functions, J. Math. Anal. Appl. 167 (1992), no. 2, 530–556. MR 1168605, DOI 10.1016/0022-247X(92)90223-Z
- Hans G. Feichtinger and Karlheinz Gröchenig, Theory and practice of irregular sampling, Wavelets: mathematics and applications, Stud. Adv. Math., CRC, Boca Raton, FL, 1994, pp. 305–363. MR 1247520
- N. T. Gaarder, A note on the multidimensional sampling theorem, Proc. IEEE 60 (1972), 247–248. MR 0359975
- Karlheinz Gröchenig, Reconstruction algorithms in irregular sampling, Math. Comp. 59 (1992), no. 199, 181–194. MR 1134729, DOI 10.1090/S0025-5718-1992-1134729-0 E. Hewitt and K. A. Ross, Abstract harmonic analysis, Volumes I, II, Springer, New York and Berlin, 1979, 1970.
- J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 45–89. MR 766960, DOI 10.1090/S0273-0979-1985-15293-0 A. J. Jerri, The Shannon sampling theorem-its various extensions and applications: a tutorial review, Proc. IEEE 65 (1977), 1565-1596. R. E. Kahn and B. Liu, Sampling representations and the optimum reconstruction of signals, IEEE Trans. Inform. Theory 11 (1965), 339-347.
- Ravindran Kannan and Achim Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), no. 4, 499–507. MR 573842, DOI 10.1137/0208040
- Igor Kluvánek, Sampling theorem in abstract harmonic analysis, Mat.-Fyz. Časopis. Sloven. Akad. Vied. 15 (1965), 43–48 (English, with Russian summary). MR 188717
- Arthur Kohlenberg, Exact interpolation of band-limited functions, J. Appl. Phys. 24 (1953), 1432–1436. MR 60630 H. J. Landau, Letter to F. Natterer, 1988.
- H. J. Landau, A sparse regular sequence of exponentials closed on large sets, Bull. Amer. Math. Soc. 70 (1964), 566–569. MR 206615, DOI 10.1090/S0002-9904-1964-11202-7
- J. N. Lyness, An introduction to lattice rules and their generator matrices, IMA J. Numer. Anal. 9 (1989), no. 3, 405–419. MR 1011399, DOI 10.1093/imanum/9.3.405
- J. N. Lyness, T. Sørevik, and P. Keast, Notes on integration and integer sublattices, Math. Comp. 56 (1991), no. 193, 243–255. MR 1052101, DOI 10.1090/S0025-5718-1991-1052101-8
- Robert J. Marks II, Introduction to Shannon sampling and interpolation theory, Springer Texts in Electrical Engineering, Springer-Verlag, New York, 1991. MR 1077829, DOI 10.1007/978-1-4613-9708-3
- Advanced topics in Shannon sampling and interpolation theory, Springer Texts in Electrical Engineering, Springer-Verlag, New York, 1993. Edited by Robert J. Marks II. MR 1221743, DOI 10.1007/978-1-4613-9757-1
- Farokh Marvasti, Nonuniform sampling, Advanced topics in Shannon sampling and interpolation theory, Springer Texts Electrical Engrg., Springer, New York, 1993, pp. 121–156. MR 1221747
- F. Natterer, The mathematics of computerized tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. MR 856916
- F. Natterer, Sampling in fan beam tomography, SIAM J. Appl. Math. 53 (1993), no. 2, 358–380. MR 1212754, DOI 10.1137/0153021
- Harald Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1172997, DOI 10.1137/1.9781611970081 —, Lattice rules for multiple integration, Stochastic Optimization: Numerical Methods and Technical Applications (K. Marti, ed.), Lecture Notes in Econom. and Math. Systems, vol. 379, Springer, Berlin, 1992, pp. 15-26.
- Morris Newman, Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972. MR 0340283 A. Papoulis, Signal analysis, McGraw-Hill, New York, 1977.
- Daniel P. Petersen and David Middleton, Sampling and reconstruction of wave-number-limited functions in $N$-dimensional Euclidean spaces, Information and Control 5 (1962), 279–323. MR 151331
- Paul A. Rattey and Allen G. Lindgren, Sampling the $2$-D Radon transform, IEEE Trans. Acoust. Speech Signal Process. 29 (1981), no. 5, 994–1002. MR 629035, DOI 10.1109/TASSP.1981.1163686
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Ian H. Sloan, Numerical integration in high dimensions—the lattice rule approach, Numerical integration (Bergen, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 357, Kluwer Acad. Publ., Dordrecht, 1992, pp. 55–69. MR 1198898
- Ian H. Sloan and Philip J. Kachoyan, Lattice methods for multiple integration: theory, error analysis and examples, SIAM J. Numer. Anal. 24 (1987), no. 1, 116–128. MR 874739, DOI 10.1137/0724010
- Ian H. Sloan and James N. Lyness, The representation of lattice quadrature rules as multiple sums, Math. Comp. 52 (1989), no. 185, 81–94. MR 947468, DOI 10.1090/S0025-5718-1989-0947468-3 J. L. Yen, On nonuniform sampling of bandwidth-limited signals, IRE Trans. Circuit Theory 3 (1956), 251-257.
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 307-327
- MSC: Primary 43A25; Secondary 65Dxx, 65T20, 94A05
- DOI: https://doi.org/10.1090/S0025-5718-1994-1240658-6
- MathSciNet review: 1240658