## On the shape of tetrahedra from bisection

HTML articles powered by AMS MathViewer

- by Anwei Liu and Barry Joe PDF
- Math. Comp.
**63**(1994), 141-154 Request permission

## Abstract:

We present a procedure for bisecting a tetrahedron**T**successively into an infinite sequence of tetrahedral meshes ${\mathcal {T}^0},{\mathcal {T}^1},{\mathcal {T}^2}, \ldots$, which has the following properties: (1) Each mesh ${\mathcal {T}^n}$ is conforming. (2) There are a finite number of classes of similar tetrahedra in all the ${\mathcal {T}^n},n \geq 0$. (3) For any tetrahedron ${\mathbf {T}}_i^n$ in ${\mathcal {T}^n},\eta ({\mathbf {T}}_i^n) \geq {c_1}\eta ({\mathbf {T}})$, where $\eta$ is a tetrahedron shape measure and ${c_1}$ is a constant. (4) $\delta ({\mathbf {T}}_i^n) \leq {c_2}{(1/2)^{n/3}}\delta ({\mathbf {T}})$, where $\delta ({\mathbf {T’}})$ denotes the diameter of tetrahedron ${\mathbf {T’}}$ and ${c_2}$ is a constant. Estimates of ${c_1}$ and ${c_2}$ are provided. Properties (2) and (3) extend similar results of Stynes and Adler, and of Rosenberg and Stenger, respectively, for the 2-D case. The diameter bound in property (4) is better than one given by Kearfott.

## References

- Andrew Adler,
*On the bisection method for triangles*, Math. Comp.**40**(1983), no. 162, 571–574. MR**689473**, DOI 10.1090/S0025-5718-1983-0689473-5 - Gene H. Golub and Charles F. Van Loan,
*Matrix computations*, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR**1002570**
B. Joe, - Baker Kearfott,
*A proof of convergence and an error bound for the method of bisection in $\textbf {R}^{n}$*, Math. Comp.**32**(1978), no. 144, 1147–1153. MR**494897**, DOI 10.1090/S0025-5718-1978-0494897-3 - María-Cecilia Rivara,
*Mesh refinement processes based on the generalized bisection of simplices*, SIAM J. Numer. Anal.**21**(1984), no. 3, 604–613. MR**744176**, DOI 10.1137/0721042 - M.-Cecilia Rivara,
*Algorithms for refining triangular grids suitable for adaptive and multigrid techniques*, Internat. J. Numer. Methods Engrg.**20**(1984), no. 4, 745–756. MR**739618**, DOI 10.1002/nme.1620200412
—, - Ivo G. Rosenberg and Frank Stenger,
*A lower bound on the angles of triangles constructed by bisecting the longest side*, Math. Comp.**29**(1975), 390–395. MR**375068**, DOI 10.1090/S0025-5718-1975-0375068-5 - Marjorie Senechal,
*Which tetrahedra fill space?*, Math. Mag.**54**(1981), no. 5, 227–243. MR**644075**, DOI 10.2307/2689983 - Martin Stynes,
*On faster convergence of the bisection method for all triangles*, Math. Comp.**35**(1980), no. 152, 1195–1201. MR**583497**, DOI 10.1090/S0025-5718-1980-0583497-1

*Delaunay versus max-min solid angle triangulations for three-dimensional mesh generation*, Internat. J. Numer. Methods Engrg.

**31**(1991), 987-997. —,

*Three-dimensional boundary-constrained triangulations*, Artificial Intelligence, Expert Systems, and Symbolic Computing (E. N. Houstis and J. R. Rice, eds.), Elsevier Science Publishers, 1992, pp. 215-222.

*A grid generator based on 4-triangles conforming mesh-refinement algorithms*, Internat. J. Numer. Methods Engrg.

**24**(1987), 1343-1354.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp.
**63**(1994), 141-154 - MSC: Primary 65M50; Secondary 51M20, 52B10, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1994-1240660-4
- MathSciNet review: 1240660