Numerical evaluation of some trigonometric series
HTML articles powered by AMS MathViewer
- by W. McLean PDF
- Math. Comp. 63 (1994), 271-275 Request permission
Abstract:
We present a method for the accurate numerical evaluation of a family of trigonometric series arising in the design of special-purpose quadrature rules for boundary element methods. The series converge rather slowly, but can be expressed in terms of Fourier-Chebyshev series that converge rapidly.References
-
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Ninth Printing, Dover, New York, 1970.
- J. Boersma and J. P. Dempsey, On the numerical evaluation of Legendre’s chi-function, Math. Comp. 59 (1992), no. 199, 157–163. MR 1134715, DOI 10.1090/S0025-5718-1992-1134715-0
- Gavin Brown, G. A. Chandler, Ian H. Sloan, and David C. Wilson, Properties of certain trigonometric series arising in numerical analysis, J. Math. Anal. Appl. 162 (1991), no. 2, 371–380. MR 1137625, DOI 10.1016/0022-247X(91)90155-S
- G. A. Chandler and I. H. Sloan, Spline qualocation methods for boundary integral equations, Numer. Math. 58 (1990), no. 5, 537–567. MR 1080305, DOI 10.1007/BF01385639
- C. W. Clenshaw, Chebyshev series for mathematical functions, National Physical Laboratory Mathematical Tables, Vol. 5, Her Majesty’s Stationery Office, London, 1962. Department of Scientific and Industrial Research. MR 0142793
- C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197–205. MR 117885, DOI 10.1007/BF01386223
- L. Fox and I. B. Parker, Chebyshev polynomials in numerical analysis, Oxford University Press, London-New York-Toronto, Ont., 1968. MR 0228149 I. S. Gradsteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York, 1965.
- L. Lewin, Dilogarithms and associated functions, Macdonald, London, 1958. Foreword by J. C. P. Miller. MR 0105524
- Theodore J. Rivlin, The Chebyshev polynomials, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0450850
- Ian H. Sloan, Error analysis of boundary integral methods, Acta numerica, 1992, Acta Numer., Cambridge Univ. Press, Cambridge, 1992, pp. 287–339. MR 1165728, DOI 10.1017/s0962492900002294
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 271-275
- MSC: Primary 65T10; Secondary 42A32, 65B10
- DOI: https://doi.org/10.1090/S0025-5718-1994-1240661-6
- MathSciNet review: 1240661