A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries
HTML articles powered by AMS MathViewer
- by James H. Bramble and J. Thomas King PDF
- Math. Comp. 63 (1994), 1-17 Request permission
Abstract:
In this paper we consider a simple finite element method on an approximate polygonal domain using linear elements. The Dirichlet data are transferred in a natural way and the resulting linear system can be solved using multigrid techniques. Our analysis takes into account the change in domain and data transfer, and optimal-error estimates are obtained that are robust in the regularity of the boundary data provided they are at least square integrable. It is proved that the natural extension of our finite element approximation to the original domain is optimal-order accurate.References
- Alan E. Berger, $L^{2}$ error estimates for finite elements with interpolated boundary conditions, Numer. Math. 21 (1973/74), 345–349. MR 343655, DOI 10.1007/BF01436388
- Alan Berger, Ridgway Scott, and Gilbert Strang, Approximate boundary conditions in the finite element method, Symposia Mathematica, Vol. X (Convegno di Analisi Numerica, INDAM, Rome, 1972) Academic Press, London, 1972, pp. 295–313. MR 0403258
- J. J. Blair, Bounds for the change in the solutions of second order elliptic PDE’s when the boundary is perturbed, SIAM J. Appl. Math. 24 (1973), 277–285. MR 317557, DOI 10.1137/0124029
- James H. Bramble, Multigrid methods, Pitman Research Notes in Mathematics Series, vol. 294, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1247694
- James H. Bramble, Todd Dupont, and Vidar Thomée, Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections, Math. Comp. 26 (1972), 869–879. MR 343657, DOI 10.1090/S0025-5718-1972-0343657-7
- James H. Bramble and Joseph E. Pasciak, New estimates for multilevel algorithms including the $V$-cycle, Math. Comp. 60 (1993), no. 202, 447–471. MR 1176705, DOI 10.1090/S0025-5718-1993-1176705-9
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125, DOI 10.1090/S0025-5718-1986-0842125-3
- James H. Bramble, Joseph E. Pasciak, and Jinchao Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Math. Comp. 56 (1991), no. 193, 1–34. MR 1052086, DOI 10.1090/S0025-5718-1991-1052086-4
- James H. Bramble and Jinchao Xu, Some estimates for a weighted $L^2$ projection, Math. Comp. 56 (1991), no. 194, 463–476. MR 1066830, DOI 10.1090/S0025-5718-1991-1066830-3
- Gilbert Choudury and Irena Lasiecka, Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data, Numer. Funct. Anal. Optim. 12 (1991), no. 5-6, 469–485 (1992). MR 1159921, DOI 10.1080/01630569108816443
- P. G. Ciarlet, Basic error estimates for elliptic problems, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 17–351. MR 1115237
- P. G. Ciarlet and P.-A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 409–474. MR 0421108
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682 T. Dupont, ${L_2}$ error estimates for projecting methods for parabolic equations in approximating domains, Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, ed.), Academic Press, New York, 1974, pp. 313-352.
- George J. Fix, Max D. Gunzburger, and Janet S. Peterson, On finite element approximations of problems having inhomogeneous essential boundary conditions, Comput. Math. Appl. 9 (1983), no. 5, 687–700. MR 726817, DOI 10.1016/0898-1221(83)90126-8
- Donald A. French and J. Thomas King, Approximation of an elliptic control problem by the finite element method, Numer. Funct. Anal. Optim. 12 (1991), no. 3-4, 299–314. MR 1143001, DOI 10.1080/01630569108816430
- Donald A. French and J. Thomas King, Analysis of a robust finite element approximation for a parabolic equation with rough boundary data, Math. Comp. 60 (1993), no. 201, 79–104. MR 1153163, DOI 10.1090/S0025-5718-1993-1153163-1
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- I. Lasiecka, Galerkin approximations of abstract parabolic boundary value problems with rough boundary data—$L_p$ theory, Math. Comp. 47 (1986), no. 175, 55–75. MR 842123, DOI 10.1090/S0025-5718-1986-0842123-X J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications. I, Springer-Verlag, Berlin, 1972.
- J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal. 36 (1970), 348–355 (German). MR 255043, DOI 10.1007/BF00282271
- Ridgway Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer. Anal. 12 (1975), 404–427. MR 386304, DOI 10.1137/0712032
- Gilbert Strang, Variational crimes in the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 689–710. MR 0413554
- Gilbert Strang and Alan E. Berger, The change in solution due to change in domain, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 199–205. MR 0337023
- Vidar Thomée, Polygonal domain approximation in Dirichlet’s problem, J. Inst. Math. Appl. 11 (1973), 33–44. MR 349044 —, Approximate solution of Dirichlet’s problem using approximating polygonal domains, Topics in Numerical Analysis (J. J. H. Miller, ed.), Academic Press, New York, 1973, pp. 311-328. J. Xu, Theory of multilevel methods, Thesis, Cornell University, Ithaca, New York, 1989.
- Alexander Ženíšek, Nonhomogeneous boundary conditions and curved triangular finite elements, Apl. Mat. 26 (1981), no. 2, 121–141 (English, with Czech summary). With a loose Russian summary. MR 612669
- Miloš Zlámal, Curved elements in the finite element method. I, SIAM J. Numer. Anal. 10 (1973), 229–240. MR 395263, DOI 10.1137/0710022
- Miloš Zlámal, Curved elements in the finite element method. II, SIAM J. Numer. Anal. 11 (1974), 347–362. MR 343660, DOI 10.1137/0711031
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 1-17
- MSC: Primary 65N30; Secondary 65F10
- DOI: https://doi.org/10.1090/S0025-5718-1994-1242055-6
- MathSciNet review: 1242055