## On generalized inversive congruential pseudorandom numbers

HTML articles powered by AMS MathViewer

- by Jürgen Eichenauer-Herrmann PDF
- Math. Comp.
**63**(1994), 293-299 Request permission

## Abstract:

The inversive congruential method with prime modulus for generating uniform pseudorandom numbers has several very promising properties. Very recently, a generalization for composite moduli has been introduced. In the present paper it is shown that the generated sequences have very attractive statistical independence properties.## References

- Jürgen Eichenauer and Jürgen Lehn,
*A nonlinear congruential pseudorandom number generator*, Statist. Hefte**27**(1986), no. 4, 315–326. MR**877295** - Jürgen Eichenauer-Herrmann,
*Improved lower bounds for the discrepancy of inversive congruential pseudorandom numbers*, Math. Comp.**62**(1994), no. 206, 783–786. MR**1216258**, DOI 10.1090/S0025-5718-1994-1216258-0
—, - Jürgen Eichenauer-Herrmann,
*Inversive congruential pseudorandom numbers avoid the planes*, Math. Comp.**56**(1991), no. 193, 297–301. MR**1052092**, DOI 10.1090/S0025-5718-1991-1052092-X - Jürgen Eichenauer-Herrmann,
*Statistical independence of a new class of inversive congruential pseudorandom numbers*, Math. Comp.**60**(1993), no. 201, 375–384. MR**1159168**, DOI 10.1090/S0025-5718-1993-1159168-9 - Mary Flahive and Harald Niederreiter,
*On inversive congruential generators for pseudorandom numbers*, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 75–80. MR**1199823** - G. H. Hardy and E. M. Wright,
*An introduction to the theory of numbers*, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR**568909** - Klaus Huber,
*On the period length of generalized inversive pseudorandom number generators*, Appl. Algebra Engrg. Comm. Comput.**5**(1994), no. 5, 255–260. MR**1282100**, DOI 10.1007/BF01225640 - J. Kiefer,
*On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm*, Pacific J. Math.**11**(1961), 649–660. MR**131885** - Harald Niederreiter,
*Pseudo-random numbers and optimal coefficients*, Advances in Math.**26**(1977), no. 2, 99–181. MR**476679**, DOI 10.1016/0001-8708(77)90028-7 - Harald Niederreiter,
*The serial test for congruential pseudorandom numbers generated by inversions*, Math. Comp.**52**(1989), no. 185, 135–144. MR**971407**, DOI 10.1090/S0025-5718-1989-0971407-2 - Harald Niederreiter,
*Lower bounds for the discrepancy of inversive congruential pseudorandom numbers*, Math. Comp.**55**(1990), no. 191, 277–287. MR**1023766**, DOI 10.1090/S0025-5718-1990-1023766-0 - Harald Niederreiter,
*Recent trends in random number and random vector generation*, Ann. Oper. Res.**31**(1991), no. 1-4, 323–345. Stochastic programming, Part II (Ann Arbor, MI, 1989). MR**1118905**, DOI 10.1007/BF02204856
—, - Harald Niederreiter,
*Random number generation and quasi-Monte Carlo methods*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1172997**, DOI 10.1137/1.9781611970081 - Harald Niederreiter,
*Finite fields, pseudorandom numbers, and quasirandom points*, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 375–394. MR**1199844**
—,

*Inversive congruential pseudorandom numbers*:

*a tutorial*, Internat. Statist. Rev.

**60**(1992), 167-176.

*Nonlinear methods for pseudorandom number and vector generation*, Simulation and Optimization (G. Pflug and U. Dieter, eds.), Lecture Notes in Econom. and Math. Systems, vol. 374, Springer, Berlin, 1992, pp. 145-153.

*New methods for pseudorandom number and pseudorandom vector generation*, Proc. 1992 Winter Simulation Conf. (Arlington, VA, 1992), IEEE Press, Piscataway, NJ, 1992, pp. 264-269.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp.
**63**(1994), 293-299 - MSC: Primary 11K45; Secondary 11L07, 65C10
- DOI: https://doi.org/10.1090/S0025-5718-1994-1242056-8
- MathSciNet review: 1242056