On generalized inversive congruential pseudorandom numbers
HTML articles powered by AMS MathViewer
- by Jürgen Eichenauer-Herrmann PDF
- Math. Comp. 63 (1994), 293-299 Request permission
Abstract:
The inversive congruential method with prime modulus for generating uniform pseudorandom numbers has several very promising properties. Very recently, a generalization for composite moduli has been introduced. In the present paper it is shown that the generated sequences have very attractive statistical independence properties.References
- Jürgen Eichenauer and Jürgen Lehn, A nonlinear congruential pseudorandom number generator, Statist. Hefte 27 (1986), no. 4, 315–326. MR 877295
- Jürgen Eichenauer-Herrmann, Improved lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 62 (1994), no. 206, 783–786. MR 1216258, DOI 10.1090/S0025-5718-1994-1216258-0 —, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176.
- Jürgen Eichenauer-Herrmann, Inversive congruential pseudorandom numbers avoid the planes, Math. Comp. 56 (1991), no. 193, 297–301. MR 1052092, DOI 10.1090/S0025-5718-1991-1052092-X
- Jürgen Eichenauer-Herrmann, Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60 (1993), no. 201, 375–384. MR 1159168, DOI 10.1090/S0025-5718-1993-1159168-9
- Mary Flahive and Harald Niederreiter, On inversive congruential generators for pseudorandom numbers, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 75–80. MR 1199823
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Klaus Huber, On the period length of generalized inversive pseudorandom number generators, Appl. Algebra Engrg. Comm. Comput. 5 (1994), no. 5, 255–260. MR 1282100, DOI 10.1007/BF01225640
- J. Kiefer, On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961), 649–660. MR 131885
- Harald Niederreiter, Pseudo-random numbers and optimal coefficients, Advances in Math. 26 (1977), no. 2, 99–181. MR 476679, DOI 10.1016/0001-8708(77)90028-7
- Harald Niederreiter, The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989), no. 185, 135–144. MR 971407, DOI 10.1090/S0025-5718-1989-0971407-2
- Harald Niederreiter, Lower bounds for the discrepancy of inversive congruential pseudorandom numbers, Math. Comp. 55 (1990), no. 191, 277–287. MR 1023766, DOI 10.1090/S0025-5718-1990-1023766-0
- Harald Niederreiter, Recent trends in random number and random vector generation, Ann. Oper. Res. 31 (1991), no. 1-4, 323–345. Stochastic programming, Part II (Ann Arbor, MI, 1989). MR 1118905, DOI 10.1007/BF02204856 —, Nonlinear methods for pseudorandom number and vector generation, Simulation and Optimization (G. Pflug and U. Dieter, eds.), Lecture Notes in Econom. and Math. Systems, vol. 374, Springer, Berlin, 1992, pp. 145-153.
- Harald Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1172997, DOI 10.1137/1.9781611970081
- Harald Niederreiter, Finite fields, pseudorandom numbers, and quasirandom points, Finite fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991) Lecture Notes in Pure and Appl. Math., vol. 141, Dekker, New York, 1993, pp. 375–394. MR 1199844 —, New methods for pseudorandom number and pseudorandom vector generation, Proc. 1992 Winter Simulation Conf. (Arlington, VA, 1992), IEEE Press, Piscataway, NJ, 1992, pp. 264-269.
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 293-299
- MSC: Primary 11K45; Secondary 11L07, 65C10
- DOI: https://doi.org/10.1090/S0025-5718-1994-1242056-8
- MathSciNet review: 1242056