Resolvent estimates for elliptic finite element operators in one dimension
HTML articles powered by AMS MathViewer
- by M. Crouzeix, S. Larsson and V. Thomée PDF
- Math. Comp. 63 (1994), 121-140 Request permission
Abstract:
We prove the analyticity (uniform in h) of the semigroups generated on ${L_p}(0,1),1 \leq p \leq \infty$, by finite element analogues ${A_h}$ of a one-dimensional second-order elliptic operator A under Dirichlet boundary conditions. This is accomplished by showing the appropriate estimates for the resolvents by means of energy arguments. The results are applied to prove stability and optimal-order error bounds for numerical solutions of the associated parabolic problem for both smooth and nonsmooth data.References
- Garth A. Baker, James H. Bramble, and Vidar Thomée, Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), no. 140, 818–847. MR 448947, DOI 10.1090/S0025-5718-1977-0448947-X
- Philip Brenner, Michel Crouzeix, and Vidar Thomée, Single-step methods for inhomogeneous linear differential equations in Banach space, RAIRO Anal. Numér. 16 (1982), no. 1, 5–26 (English, with French summary). MR 648742
- M. Crouzeix, S. Larsson, S. Piskarëv, and V. Thomée, The stability of rational approximations of analytic semigroups, BIT 33 (1993), no. 1, 74–84. MR 1326004, DOI 10.1007/BF01990345
- M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. MR 878688, DOI 10.1090/S0025-5718-1987-0878688-2
- G. Da Prato and P. Grisvard, Sommes d’opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. (9) 54 (1975), no. 3, 305–387 (French). MR 442749
- G. Da Prato and E. Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 2, 285–344 (1988). MR 939631
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475–483. MR 371077, DOI 10.1090/S0025-5718-1975-0371077-0
- Stig Larsson, Vidar Thomée, and Lars B. Wahlbin, Finite-element methods for a strongly damped wave equation, IMA J. Numer. Anal. 11 (1991), no. 1, 115–142. MR 1089551, DOI 10.1093/imanum/11.1.115
- B. S. Mitjagin and E. M. Semenov, Absence of interpolation of linear operators in spaces of smooth functions, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 6, 1289–1328, 1447 (Russian). MR 0482148
- C. Palencia, A stability result for sectorial operators in Banach spaces, SIAM J. Numer. Anal. 30 (1993), no. 5, 1373–1384. MR 1239826, DOI 10.1137/0730071
- C. Palencia, On the stability of variable stepsize rational approximations of holomorphic semigroups, Math. Comp. 62 (1994), no. 205, 93–103. MR 1201070, DOI 10.1090/S0025-5718-1994-1201070-9
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Eugenio Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), no. 1, 16–66. MR 786012, DOI 10.1016/0022-247X(85)90353-1
- Vidar Thomée and Lars B. Wahlbin, Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable, Numer. Math. 41 (1983), no. 3, 345–371. MR 712117, DOI 10.1007/BF01418330
- Lars B. Wahlbin, A quasioptimal estimate in piecewise polynomial Galerkin approximation of parabolic problems, Numerical analysis (Dundee, 1981) Lecture Notes in Math., vol. 912, Springer, Berlin-New York, 1982, pp. 230–245. MR 654353
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp. 63 (1994), 121-140
- MSC: Primary 65N30; Secondary 65M60
- DOI: https://doi.org/10.1090/S0025-5718-1994-1242058-1
- MathSciNet review: 1242058