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ON THE COMPUTATION OF BATTLE-LEMARIE’S WAVELETS

MING-JUN LAI

ABSTRACT. We propose a matrix approach to the computation of Battle—
Lemarié’s wavelets. The Fourier transform of the scaling function is the prod-
uct of the inverse F(x) of a square root of a positive trigonometric polynomial
and the Fourier transform of a B-spline of order m . The polynomial is the
symbol of a bi-infinite matrix B associated with a B-spline of order 2m . We
approximate this bi-infinite matrix B,,, by its finite section Ay , a square ma-
trix of finite order. We use 4y to compute an approximation xy of x whose
discrete Fourier transform is F(x). We show that xy converges pointwise to
x exponentially fast. This gives a feasible method to compute the scaling func-
tion for any given tolerance. Similarly, this method can be used to compute the
wavelets.

1. INTRODUCTION

Battle-Lemarié’s wavelets [1, 3] may be constructed by using a multiresolution
approximation built from polynomial splines of order m > 0. See, e.g., [4] or
[2]. To be precise, let ¥, be the vector space of all functions of L2(R) which
are m—2 times continuously differentiable and equal to a polynomial of degree
m—1 on each interval [n+m/2, n+1+m/2] for all n € Z. Define the other
resolution space V; by

Vi i={u(*t):ueVy}, VkelZ.

It is known that {V;},cz provide a multiresolution approximation, and there
exists a unique scaling function ¢ such that

Vi = span;. {2292kt —n):ne 2}

for all k, and the integer translates of ¢ are orthonormal to each other. (See,
e.g., [4].) Define a transfer function H(w) by
9(2w)
Hw)=——",
() ¢(w)
where ¢ denotes the Fourier transform of ¢ . Then the wavelet y associated
with the scaling function ¢ is given in terms of its Fourier transform by

V() = e 7 H(w/2 + 1)§(w/2).
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Here and throughout, j := +/—1. The scaling function ¢ associated with the
multiresolution approximation may be given by

. 1
(1) P(w) = =
Tz Balw + 2k
where B,, is the well-known central B-spline of order m whose Fourier trans-
form is given by

gm(w) ’

b= (52

By using Poisson’s summation formula, we have
] 1 =
$(w) = — By ()
\ Tz Bam(K)e=ike
Thus, the transfer function is
_ Zkez Bym(k)eik2w
Ykez Bam(k)e—ike
Then the wavelet y associated with ¢ is given by
3) (@) = HwZT ) ‘
V Ckez Bum(k)e=kor?

The above Fourier transforms of ¢, H, and y suggest that the scaling func-
tion, transfer function, and wavelet have the following representations:

o(t) =Y cxBm(t—k),

(2) H(w) (cosw/2)™.

Bm(w/2).

keZ
H(w) =) pre 7,
keZ
w(t) = 1Bm(2t k).
keZ

In this paper, we propose a matrix method to compute the a’s, Bi’s, and
7&’s. Let us use ¢ to illustrate our method as follows: view -, ., By (k)e—ike
as the symbol of a bi-infinite matrix By, = (bj); kez With b; = by y_; =
Bym(k — i) forall i, k € Z. Similarly, \/ > kez Bam(k)e—7k® can be viewed as

the symbol of another (unknown) bi-infinite matrix C,,, . Then it is easy to see
that

C3, =Bon.
To find
z ake-j ko — ! _
kezZ \/Zkez Bom(k)e—ike
is equivalent to solving

with é = (d;)icz, 0o = 1, and J; = 0 for all i € Z\{0}, where x = (ax)kez -
Our numerical method is to find an approximation to x within a given tolerance.
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Let Ay = (bik)-n<i k<n be a finite section of By, . Note that Ay is symmetric
and totally positive. Thus, we can find Py such that

P2 = Ay

by using, e.g., the singular value decomposition. Then we solve Pyxy = oy with
Joy avector of 2N+1 components which are all zeros except for the middle one,
which is 1. We can show that xy converges pointwise to x exponentially fast.
Similarly, we can use this idea to compute an approximation of {fi}rcz by
(2) and {yx}xez by (3). Therefore, the discussion mentioned above furnishes
a numerical method to compute Battle-Lemarié’s wavelet.

To prove the convergence of xy to x, we place ourselves in a more gen-
eral setting. We study a general bi-infinite matrix 4. (For the case of Battle-
Lemarié’s wavelets, 4 = B,,,.) We looAk for certain conditions on 4 such that
the solution xy of ﬁNxN = Jy with P,%, = Ay converges to the solution x of
Px = ¢ with P? = 4, where Ay is a finite section of A. This is discussed
in the next section. In the last section, we show that the bi-infinite matrix B,,,
satisfies the conditions on A4 obtained in §2. This will establish our numerical
method for computing Battle-Lemarié’s wavelets.

2. MAIN RESULTS

Let Z be the set of all integers. Let /2 := [2(Z) be the space of all square
summable sequences with indices in Z. That is,

IZ(Z)= {(...,x_l,xo,xl,...)’: Z |X,'|2<OO} .

i=—00

It is known that /2 is a Hilbert space. We shall use x to denote each vector in
1?2 and use A4 to denote a linear operator from /2 to /2. It is known that A
can be expressed as a bi-infinite matrix. Thus, we shall write 4 = (ajx); kez -
In the following, we shall consider A to be a banded and/or Toeplitz matrix.
That is, A4 is said to be banded if there exists a positive integer b such that
a;x = 0 whenever |i—k| > b. The matrix A is said to be Toeplitz if a; .k m+k =
a; m forall i, k, meZ. Denote by F(x)(w) the symbol of a vector x € /2,

1e.,
F(x)(w) =Y xie /.

i€z

Denote by F(A)(w) the symbol of a Toeplitz matrix 4 = (a); ez, i-€.,
F(A) ()= a; 07"
i€z
Suppose that F(A4)(w) # 0 and Y ;. |ai 0l < co. It is known from the

well-known Wiener’s theorem that there exists a sequence x such that

1 — —jkw
F(4)(@) kezz"""

with 3", |xx| < co. It is easy to see that to find this sequence x is equivalent
to solving the linear system of bi-infinite order:

Ax =9,
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where 6 =(...,d_1, d9, 1, ...)" with dp=1 and J; =0 for all i € Z\{0}.

Furthermore, if the matrix A is a positive operator, then there exists a unique
positive square root P of A. That is, P2 = A. The symbol representation is
F(P)(w) = /F(A)(w). To find F(P)(w) is equivalent to finding a matrix P
such that P2=4.

Certainly, we cannot solve a linear system of bi-infinite order. Neither can we
decompose a matrix of bi-infinite order into two matrices of bi-infinite order.
However, we can do this approximatively. Let N be a positive integer, and let
Ayx = (aik)_Ns,‘,ksN be a finite section of A. Let Iy o = (0, I2N+l,2N+l ,0)
be a matrix of 2N + 1 rows and bi-infinite columns with oy, 2y+1 being the
identity matrix of size (2N + 1) x (2N + 1) such that

An = Iy o0Aly .

Denote oy = Iy o0 and Xy = Iy, ox. Then we shall solve the following linear
system:
A N)A(N = 61\] .

We claim that Xy converges to x exponentially fast as N increases to oo,

under certain conditions on A . Furthermore, we shall solve P2 = Ay for Py

by using the singular value decomposition. Once we have Py, we shall solve
Pyyy = 0N .

We claim that yy converges to y exponentially fast as N — oo, provided 4
satisfies certain conditions.
To check the conditions on A4, we need the following definition.

Definition. A matrix A = (a;); kez is said to be of exponential decay off its
diagonal if .
|a| < Krli=K]

for some constant K and r € (0, 1).
We begin with an elementary lemma.

Lemma 1. Suppose that A is of exponential decay off its diagonal and has a
bounded inverse. Suppose that Ay' = (@ik)-n<i,k<n Satisfies the property that

|a;  (N)| < Kri=9, V-N<i,k<N,
forall N >0. Then there exists r; € (0, 1) and a constant K, such that
N, 00X — Xn 2 < Ky,

where x is the solution of Ax =8 and Xy is the solution of ANXy = O .

Proof. From the assumption of the lemma, there exist K and r € (0, 1) such
that 4 = (aix)i kez and Ay' = (@ x(N))-n<i k<n satisfy

lag| < Kr'=K and |a;| < Krli=kl,

Write

B
AIItV,oo = |:AN:| and d= BA;,‘&N withd = (..., d_n_1, d_N)‘.

C
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Then we have, for each i = —00,...,-N—-1, —N,
N N
dil = | Y andy, oN)| < K> Y rlizklplk
k=—N k=—N
N
= K? (r‘iz:rz" +Nr‘i) <CA!
k=0

for some constant C and 4 € (0, 1). Thus, ||BA™1dx|]2 < C'AV. Similarly,
|CAx'onll2 < C'AV . Hence,

v, coX = Xnll2 < lIX = I ooknll2 < 147" 1216 — AL} oo AR Onll2

B
<|A7Y2 (|6 = | 4w
C

A;,‘(SN

2

L

-

BA;
<A Y2 |6 — | Tane1, 2841 | ON
CAy' )

< 47 2(11BAR nllz + IC Ay Onll2) < 1471 |22C"A7,

hence the assertion with K; = 2C’||A~!||; and r; = A. This establishes the
lemma. O

Next, we consider approximating the square root of a positive operator.

Lemma 2. Let P be the unique square root of a positive operator A. Suppose
that A is banded and ||A - 1|, < r < 1, where I is the identity operator from
12 to I>. Then P = (pix)i kez IS of exponential decay off its diagonal.

Proof. The uniqueness of P and the convergence of the series

Z( i3y

i=0
imply that

P=VA=\T+(A-1)= Z 2)'3') (A=1).

The matrix A is banded and so is 4 —I. If 4 —1 has bandwidth b, then
(A —1I)" is also banded with bandwidth ib. Thus, |p;| < Krli=*I/® for some
constant K . This finishes the proof. O

Lemma 3. Let P be the unique square root of a positive operator A. Suppose
that A is banded and ||A—I||; <r < 1, where I is the identity operator from
12 to I2. Then P~ = (py); _kez is of exponential decay off its diagonal.

Proof. The uniqueness of P! and the convergence of the series

Sy u- oy

i=0
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imply that

= () = (T4 (4 - D)) = Z(l -1

Now we use the same argument as in the lemma above to conclude that P~! is
of exponential decay off its diagonal. O

Let ﬁN be the square root of 4y . That is, ﬁ,%, = Ay. Denote Py =
Iy o PI 1{,’00 . We need to estimate PyPy — PyPy. We have

Lemma 4. Let R = (ry)_n<i <y := PxPyv — PyPy. Then ry = O(r¥/(#®) for
k=-N/4+1,...,N/4—-1 and i=—-N,..., N, where b is the bandwidth
of A and r is as defined in Lemma 3.

Proof. It is known that P and 4 commute. Let us write

a B o ﬂl a ﬂZ
P=|B" Py C! and A= |a" Ay ¢
a; C a4 By ¢ B4

We have B'a + PyAy + C'c = a’B + AyPy + c!C. Thus, PyAy — AyPy =
a'B-B'a+c'C-C'c. Let E=a'B—-B'a+c'C—C'c and Iy := Ly ,28+1 -
We have Py(Ay —Iy) = (Any — In)Py + E and
n—1
Py(An —IN)" = (Ax — IN)"Py + ) _(An — In)*E(Ay — Iy)" !
k=0
by using induction. Then, we have
N 2n —
PyPy = Z( 1)"(
prd (2mt

(e <]

=3 tr E0 S = I

n=

+Z( 1) 2”2 );7',) ZAN In)*E(Ay — Iy)"=*!

3)! ~Pn(An = IN)"

=0 k=0

To estimate R = PNﬁN - I3NPN which is the summation above, we break R
into two parts and estimate the first by

S (- o Z(AN InJFE(Ay — I)"*!

n=N1+1 2

2n
< > BRIy - Il < Killdw - Il
n=N1+1

Thus, this part has the desired property if we choose N1 appropriately. Next,
we note that Ay —Iy is banded and its bandwidth is 4. Thus, for 0 <n < N1,
(Ay — Iy)" is also banded and has bandwidth nb < bN1.
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Note also E = (e;x)_n<i k<n has the following property:

0 for —~N+b<k<N-b, = N+b<i<N-b,
eik:{O(rN—lkl) for —-N<i<-N+band N-b<i<N, -N<k<N.
It follows that (Ay — Iy)'E has a similar property as E :

0 for —-N+b<k<N-b,
-N+kb+b<i<N-Ib-b,

O(rN-lkly for —N<i<-N+Ib+b,
N-Ib-b<i<N, and —-N<k<N.

Choose N1 such that N/(4b) < N1 < N/(4b) + 1. Then (Ay — I)M! has
bandwidth bN1 < N/4 + b and hence

O(r3N/4=b=lkly if |k|< N/dand — N<i<N,
o(1) otherwise

for /=1,..., N1. Putting these two parts together, we have established that
R has the desired property. 0O

(An = IN)'E)y =

((An=D/ EAn=17" i = {

We are now ready to prove the following.

Theorem 1. Suppose that A is a positive operator and ||A — I||; < 1. Suppose
that A is a banded matrix. Let P -be the unique square root of A and y the
solution of Py = 6. Let Py be a square root matrix such that P2 = Ay and
§n the solution of Pyyn =y . Then

N, 00y — Inll2 < KAV
Jor some A€ (0, 1) and a constant K > 0.
Proof. Let P = (pix)i kez and Py = (Dik)-n<i,k<n - By Lemma 2, the matrix
P is of exponential decay off its diagonal. By Lemma 3, we know that Py is
of exponential decay off its diagonal uniformly with respect to N because of
|lAn — Ion+1,2n+1]l2 < 1, which follows from |4 — ]| < 1. The invertibility of
A implies that P is invertible. From ||4—1I|; < 1 it follows that the inverse of
P is bounded. Let §y be the solution of Pyyn = dn . Thus, we apply Lemma
1 to conclude that
1N, 0¥ — Inll2 < Kyr"
for some r € (0, 1).
We now proceed to estimate ||yx — |2 .
Note that P2 = 4 implies Ay = P2+ B'B+C'C or P2—P:=B'B+C'C.
Thus, we have

(Py + Py)(Py — Py) = P} — P} + PyPy — PyPy = B'B+ C'C +R,
where R was defined in Lemma 4. Hence,

(Py — Py) = (Py + Py)"'(B'B+ C'C +R).

Note that the entries of B‘B + C'C have the exponential decay property:
(B'B+ C!'C)y = O(rV-lkly | By Lemma 4, we know that each entry of the mid-
dle section (N/2 columns) of the columns of B’B + C'C + R has exponential
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decay O(rN/(4)) . Both Py and Py are positive and ||(Py + Py)~!|l2 < |52
is bounded. Recall that Py I is of exponential decay off its diagonal. We have

195 — $nll2 < I1Px I2llon — Pw Py w2
< 1Py 2ll(Py = Pn)(Py'om)l2
<125 YI21l(Py + Pw) "' |12ll(B'B + C'C + R)Py 4|2
< KAV

for some A € (r, 1). This completes the proof. O

In the proof above, an essential step is to show that each entry of the middle
section of the columns of Py — Py is of exponential decay. This indeed fol-
lows from (Py — Py) = (Py + Py)~'(B'B + C'C + R), the boundedness of
(Pv+ IA’N)‘l , and the fact that each entry of the middle section of the columns
of B'B+ C'C + R is of exponential decay. This has its own interest. Thus, we
have the following

Theorem 2. Suppose that A is a positive operator and ||A - I||; < 1. Suppose
that A is a banded matrix. Let P be the unique square root of A and Py =
IN P(IN o). Let Py be a square root matrix such that P,%, = Ay . Then

| Pndn — Bydnlla < KAY

for some A€ (0, 1) and a constant K .

Finally, we remark that if ||4—1I|, = |, then each entry of the middle section
of the columns of R is convergent to 0 with speed ,%, . The exponential decay
in the above has to be replaced by

| Pndn — Bydnlla <

2| >

3. COMPUTATION OF BATTLE-LEMARIE’S WAVELETS

Fix a positive integer m. Let A = B,, be the bi-infinite matrix whose
symbol is >, ., By (k)e~ k@ Clearly, A is a banded Toeplitz matrix. To see
that A is a positive operator on /%, we show that 4 > ¢/ for some ¢ > 0 as
follows: For any x € /2, we have

x'Ax = % " F(x)(w)F(A)(w)F(x)(w)dw

(4

= FA)©)5 [ IFR@) do

> min F(A)(w)|Ix]5.

With ¢ = min,, F(A)(w) > 0, we have A4 > c¢I. Similarly, we can show that
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|4 —-1I|l; < 1. Indeed,

4=l = 52 [ 1F(4 - D@PIFR @) do

-7

=21n/ 11 = F(A)(@)P|F (X)) dw

2
< max|1 - F(A)@)P et} < (1 - min FA)@)) 1.
Thus, we have
164 = 1xlz < (1= mn FA)@) Il

and hence, |4 —1I||; < 1. Thus, B,,, satisfies all the conditions of Theorem 1.
By (1), we have

1 sinw/2
9(w) = >
\/Zkez Bym(k)e—ike @/
Thus, ¢(f) = >, axBm(t — k) with x = (ay)rez satisfying

Coynx=6 and C3,=B,,.

Using our Theorem 1, we conclude that our numerical method is valid to com-
pute the a;’s.
By (2), the transfer function is

V Zkez Bom(k)e=2ke
v/ Thez Bam(k)eike

Note that when m is even, then cos™(w/2) = (1 — (e/® + e=/©)/2)™/2 | which
is a finite series. However, when m is odd, cos™(w/2) is no longer a finite
series. In order to compute H(w), let S,, be the Toeplitz matrix whose symbol
is cos?™(w/2) = (1 — (e/? +e=7®)/2)™ . Let Z be a zero insertion operator on
2 defined by

H(w) =

cos™(w/2).

xijp if iiseven,
0 if i is odd.

Thus, H(w) = Y ez Bre @ with x = (By)xez satisfying

Zx =Z(xi)icz = (2i)iez With z; = {

X=WxY*Z,
where * denotes the convolution operator of two vectors in /2 and

y=Cm6, Z=ZC;,15, w:Ta

with C%, = B,,,, T2, = S,,. Using our Theorems 1 and 2, we know that our
numerical method gives a good approximation to y and z. For m even, our
numerical method produces an xy which converges pointwise to x exponen-
tially. When m is odd, the remark after Theorem 2 has to be applied, and the
wy produced by this procedure does no longer converge to w exponentially.
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By (3), the wavelet y associated with ¢ is given by
V(2w) = e 'H(w+ n)é(w).

Once {ax}rez and {Br}rez are computed, {yx}rez can be obtained by con-
volution.

We have implemented this method to compute Battle-Lemarié’s wavelets in
MATLAB. The graphs of Battle-Lemarié’s wavelets are shown in the following
figures.
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