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ON THE COMPUTATION OF BATTLE-LEMARIE'S WAVELETS

MING-JUN LAI

Abstract. We propose a matrix approach to the computation of Battle-

Lemarié's wavelets. The Fourier transform of the scaling function is the prod-

uct of the inverse F(x) of a square root of a positive trigonometric polynomial

and the Fourier transform of a B-spline of order m . The polynomial is the

symbol of a bi-infinite matrix B associated with a B-spline of order 2m . We

approximate this bi-infinite matrix B2m by its finite section As , a square ma-

trix of finite order. We use As to compute an approximation \s of x whose

discrete Fourier transform is F(x). We show that xs converges pointwise to

x exponentially fast. This gives a feasible method to compute the scaling func-

tion for any given tolerance. Similarly, this method can be used to compute the

wavelets.

1. Introduction

Battle-Lemarié's wavelets [1,3] may be constructed by using a multiresolution
approximation built from polynomial splines of order m > 0. See, e.g., [4] or
[2]. To be precise, let Vq be the vector space of all functions of L2(R) which

are m - 2 times continuously differentiable and equal to a polynomial of degree

m - 1 on each interval [« + m/2, n+l + m/2] for all « € Z. Define the other

resolution space Vk by

Vk:={u{2kt): u£ V0},    VfceZ.

It is known that {Vk}k£z provide a multiresolution approximation, and there

exists a unique scaling function <p such that

Vk = %oanLi{2kl2fa2kt - ri) : n € Z}

for all k , and the integer translates of tp are orthonormal to each other. (See,

e-g-> [4]-) Define a transfer function //(w) by

ffim\ - ^(2ft))
H{0}) = —;—r-,

<pi(0)

where tp denotes the Fourier transform of <p . Then the wavelet y/ associated

with the scaling function tp is given in terms of its Fourier transform by

Vita) = e-j0}/2Hico/2 + n)faco/2).
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Here and throughout, ; := v^-T • The scaling function tp associated with the

multiresolution approximation may be given by

(1) faca) = ^ l Bmico),

\lïlkzz\Bm(<o + 2kn)\*

where Bm is the well-known central B-spline of order m whose Fourier trans-

form is given by

g   .   .      fsinco/2'

By using Poisson's summation formula, we have

faœ) = Bmiœ)
V/£*ez*2m(fc)e-*0'

Thus, the transfer function is

<2) g""-fet^(~B/2)--
Then the wavelet y/ associated with <p is given by

(3) ytiœ) = e-J»'2Hiœ/2 + n) l Bmioo/2).

^EkezB2m(k)e-^/2

The above Fourier transforms of <p, H, and y/ suggest that the scaling func-

tion, transfer function, and wavelet have the following representations:

<PÍt) = YakBm(t-k),
kez

Hi(o) = Y,ßke-ik,°,
kez

v(t) = YykBm(2t-k).
kÇZ

In this paper, we propose a matrix method to compute the a^'s, ßk's, and

yks. Let us use <p to illustrate our method as follows: view "51ke7jB2mik)e~ikb}

as the symbol of a bi-infinite matrix Ti2m = ibik)itkez with b¡ k = ¿o,fc-i =

B2m{k-i) for all i,k£Z. Similarly, JY,k€ZB2m(k)e-Jk(0 can be viewed as

the symbol of another (unknown) bi-infinite matrix C2m . Then it is easy to see

that

To find

kez JZkezB2m(k)e-Jk»

is equivalent to solving

C2mx = S

with S = (<5,),ez, So = I, and S¡ = 0 for all i £ Z\{0}, where x = (a^)fceZ.
Our numerical method is to find an approximation to x within a given tolerance.
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Let An = ib¡k)-N<i,k<N oe a finite section of B2m . Note that AN is symmetric

and totally positive. Thus, we can find P# such that

H = AN

by using, e.g., the singular value decomposition. Then we solve ?n*n = Sn with

<5jv a vector of 2N+1 components which are all zeros except for the middle one,

which is 1. We can show that x^ converges pointwise to x exponentially fast.

Similarly, we can use this idea to compute an approximation of {ßk}kcz by

(2) and {Yk}kez hy (3). Therefore, the discussion mentioned above furnishes

a numerical method to compute Battle-Lemarié's wavelet.

To prove the convergence of xjv to x, we place ourselves in a more gen-
eral setting. We study a general bi-infinite matrix A . (For the case of Battle-
Lemarié's wavelets, A = B2m .) We look for certain conditions on A such that

the solution x^ of PnXn = Sn with PN = An converges to the solution x of

Px = S with P2 = A, where An is a finite section of A. This is discussed

in the next section. In the last section, we show that the bi-infinite matrix H2m

satisfies the conditions on A obtained in §2. This will establish our numerical

method for computing Battle-Lemarié's wavelets.

2. Main results

Let Z be the set of all integers. Let I2 := 12{L) be the space of all square

summable sequences with indices in Z. That is,

/2(Z) = U... ,x-x,Xq,Xx, ...)' : Y M2<°°L
I «=—00 )

It is known that I2 is a Hubert space. We shall use x to denote each vector in

I2 and use A to denote a linear operator from I2 to I2. It is known that A

can be expressed as a bi-infinite matrix. Thus, we shall write A = iaik)ikez ■
In the following, we shall consider A to be a banded and/or Toeplitz matrix.

That is, A is said to be banded if there exists a positive integer b such that

aik = 0 whenever \i—k\ > b. The matrix A is said to be Toeplitz if ai+ktm+k =

a^m for all i, k, m £ Z. Denote by F{x.)ioj) the symbol of a vector x £ I2,

i.e.,

Fix)iœ) = 1£x'e~jiœ-

¡ez

Denote by FiA)ico) the symbol of a Toeplitz matrix A = iaik)itk€Z > i.e.,

FiA)i(o) = Ydai,oe-»°>.
/ez

Suppose that FiA)ia) ¿ 0 and £;€zla',o| < oo. It is known from the

well-known Wiener's theorem that there exists a sequence x such that

with Yjk \xk\ < °° • It is easy to see that to find this sequence x is equivalent
to solving the linear system of bi-infinite order:

Ax = ô,
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where Ô = (..., ¿_i, S0, Sx, ... )' with ô0 = 1 and <5, = 0 for all î e Z\{0} .
Furthermore, if the matrix A is a positive operator, then there exists a unique

positive square root P of A . That is, P2 = A . The symbol representation is

FiP)ico) = y/FiA)ico). To find /r(P)(w) is equivalent to finding a matrix P

such that P2 = A .
Certainly, we cannot solve a linear system of bi-infinite order. Neither can we

decompose a matrix of bi-infinite order into two matrices of bi-infinite order.
However, we can do this approximatively. Let TV be a positive integer, and let

An = (Qik)-N<i,k<N be a finite section of A. Let In,oo = (0, /2jv+i,2jv+i . 0)

be a matrix of 2TV + 1 rows and bi-infinite columns with I2n+x,2n+\ being the

identity matrix of size (27V + 1) x (27V + 1) such that

An = 'N ,ooAIn ,oo •

Denote Sn = In,ooS and x^ = IN>00x. Then we shall solve the following linear

system:

AnXn = Sn ■

We claim that xN converges to x exponentially fast as TV increases to oo,

under certain conditions on A . Furthermore, we shall solve PN = An for PN

by using the singular value decomposition. Once we have Pn , we shall solve

PnSn — Sn ■

We claim that y^ converges to y exponentially fast as TV —» oo, provided A

satisfies certain conditions.
To check the conditions on A, we need the following definition.

Definition. A matrix A = (a,fc)i,itez is said to be of exponential decay off its

diagonal if
\aik\ < K^-k\

for some constant K and r £ (0, 1 ).

We begin with an elementary lemma.

Lemma 1. Suppose that A is of exponential decay off its diagonal and has a

bounded inverse. Suppose that ANX = iaik)-N<i,k<N satisfies the property that

|âJjfc(7V)|<A>l'-*l,    V-N<i,k<N,

for all TV > 0. Then there exists rx £ (0, 1) and a constant Kx such that

Wlff^x-XNh^Kxrf,

where x is the solution of Ax = 5 and xN is the solution of AnXn = Sn ■

Proof. From the assumption of the lemma, there exist K and re(0, 1) such

that A = (a/*),,fcez and ANl = (àiik(N))_N<i>ksN satisfy

lOfltl < Jfr"-*l   and   \âik\ < Kr^ .

Write

and   d = BANXSN   with d = {.. , d-N-x, d-N)'•AIn,oo —

B
AN

C
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Then we have, for each i = -co, ... , -TV - 1, -TV,

693

\di\ =

N

Y aikàk,o(N)
\k=-N

■ K2

N

<K2 £ rXi-k\r\k\

ír-'¿r2/c + TVr-'J < CX~l

for some constant C and A £ (0, 1). Thus, ||iL4_1<5jv||2 < C'kN. Similarly,

\\CANXÔN\\2<C'XN. Hence,

||/v,oox - xN\\2 < ||x - IN>0oxN\\2 < \\A-X\\2\\Ô - AIn¡00AnxOn\\2
' B '

An
C

<U- s- AN SN

<\\A-

BA-NX

hN+X,2N+l

CANX

2

Sn

< \\A-x\\2í\\BA-xOn\\2 + \\CA^xSn\\2) < ||^-1||22C'A7V,

hence the assertion with Kx = 2C||^_1||2 and rx = X. This establishes the

lemma.   D

Next, we consider approximating the square root of a positive operator.

Lemma 2. Let P be the unique square root of a positive operator A. Suppose
that A is banded and \A - I\2 < r < 1, where I is the identity operator from

I2 to I2. Then P = ÍPik)i,kez is of exponential decay off its diagonal.

Proof. The uniqueness of P and the convergence of the series

i=0

,(2_/-3)!!
(2/)!!    {A    l)

imply that

P = ̂ =^I + iA-i) = ̂ i-iyVl J>J\a-i)
;=0 *•     '"

The matrix A is banded and so is A - I. If A - I has bandwidth b, then
iA - I)1 is also banded with bandwidth ib . Thus, \pik\ < Kr^'~k^b for some
constant K. This finishes the proof.   D

Lemma 3. Let P be the unique square root of a positive operator A. Suppose

that A is banded and \\A - I\\2 < r < I, where I is the identity operator from

I2 to I2. Then P~x = ÍPik)¡,kez is of exponential decay off its diagonal.

Proof. The uniqueness of P~x and the convergence of the series

£(-D
/=0

t(2f-l)ll

(20«
(A-iy
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/»-i = iA)~xl2 = (I + (A- I))'1'2 = £(-1)

¡=o

¿(2/-1)!!

(2/)!!
U-/y

Now we use the same argument as in the lemma above to conclude that P~x is

of exponential decay off its diagonal.   D

Let Pff be the square root of AN.   That is,  PN = An ■   Denote Pn =

În,ooPIn,oo • ^e neec* t° estimate PnPn - PnPn ■ We have

Lemma 4. Let R = (rik)-N<iik<N := PnPn - PnPn ■ Then rik = 0(rAr/(4*)) for
k = -TV/4 + 1, ... , TV/4 - 1 and i = -TV, ... , TV, where b is the bandwidth
of A and r is as defined in Lemma 3.

Proof. It is known that P and A commute. Let us write

'ßi     a     ß2

and   A =    a1   An    c'

fo     c     &.
We have B'a + PNAN + C'c = a'B + ANPN + c'C. Thus, PNAN - ANPN =

a'B - B'a + c'C - C'c. Let E = a'B - B'a + c'C - C'c and IN := 72jv+i ,2n+x •

We have PnÍAn - In) = ÍAn - In)Pn + E and

n-X

PnÍAn - IN)n = (AN - InYPn + £(4v - IN)kEiAN - In)"^1

k=0

by using induction. Then, we have

„(2*-3)11

P =
ax     B     a2

B'   PN   C
«3      C      C*4

PnPn
n=0 v      '

_yv   1)H(2«-3)!!

«=o
(2«)!!

PnÍAn - In)"

ÍAn - In)"Pn

oo ,~ "5\|l n—X

+ Y^-^-^w1 £(^ - InYeíAn - iN)n-k-x
„=o ^n)"    k=0

,„(2n -3)!!
n-X

PnPn + £(-l)"k ,'     /" £(^v - IN)kEiAN - IN)n-
_n \¿n)~        ._„

A;-l

To estimate T? = P#^V - PnPn which is the summation above, we break R

into two parts and estimate the first by

n-XO 1MI
A:-l

/i=Vl + l fc=0

oo

(2«)

n -

J2n)*   Y    (2"(2«)!!! " IIEWAn ~ In11"2 - *' IIAn ~ In^
n=NX+X        ^      '"

Thus, this part has the desired property if we choose TV1 appropriately. Next,
we note that An-In is banded and its bandwidth is b. Thus, for 0 < « < TV1,
ÍAn - In)" is also banded and has bandwidth nb < bNl.
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Note also E = ieik)_N<i,k<N has the following property:

JO for -N + b<k<N-b,-N + b<i<N-b,
eik ~ 1 0(^-1*1)   for -N<i<-N + b and N-b<i<N,  -N<k<N.

It follows that iAN - In)1E has a similar property as E :

0 for -N + b<k<N-b,

-N + kb + b<i<N-lb-b,

0(r*-l*l)   for -N<i<-N + lb + b,

N-lb-b<i<N, and -N<k<N.

Choose TV1 such that TV/(4Z>) < TV1 < TV/(4¿>) + 1. Then iAN - I)NX has
bandwidth ¿>TV1 < TV/4 + b and hence

«A„-r)<E(A„-r)"-'-% = ( °('3""4-'-W)   if 1*1 S "/* and - A- < i < AT,
I 0(1) otherwise

for / = 1, ... , TV1. Putting these two parts together, we have established that

R has the desired property.   D

We are now ready to prove the following.

Theorem 1. Suppose that A is a positive operator and \\A - I\\2 < 1. Suppose
that A is a banded matrix. Let P be the unique square root of A and y the

solution of Py = ô. Let PN be a square root matrix such that PN = AN and

$n the solution of PnSn — Sn ■ Then

||Tv,ooy-yv||2 <KXN

for some X £ (0, 1 ) and a constant K > 0.

Proof. Let P = ip¡k)i,k£z and Pn = ÍP¡k)-N<i,k<N ■ By Lemma 2, the matrix
P is of exponential decay off its diagonal. By Lemma 3, we know that Pn is

of exponential decay off its diagonal uniformly with respect to TV because of
\\An-I2n+x,2n+xII2 < 1, which follows from \\A-1\\2 < 1. The invertibility of
A implies that P is invertible. From ||v4-/||2 < 1 it follows that the inverse of

P is bounded. Let y^ be the solution of PnVn = Sn ■ Thus, we apply Lemma

1 to conclude that

ll/jv.ooy-yvlb <KxrN

for some r e (0, 1 ).
We now proceed to estimate ||yiv - y^lb •

Note that P2 = A implies AN = PN + B'B + C'C or P2-P2= B'B + CC.
Thus, we have

iPN + PN)iPN - Pn) = Pn-Pn + PnPn - PnPn = B'B + CC + R,

where R was defined in Lemma 4. Hence,

iPN - PN) = iPN + Pn)-\B'B + C'C + R).

Note that the entries of B'B + C'C have the exponential decay property:
iB'B + C'C)ik = 0{rN~\k\). By Lemma 4, we know that each entry of the mid-

dle section (TV/2 columns) of the columns of B'B + C'C + R has exponential
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decay 0(rAr/<4ft>). Both PN and PN are positive and ||(¿V + Pa,)-1||2 < ll^'lb

is bounded. Recall that P^x is of exponential decay off its diagonal. We have

llyv -yv||2 < II^IHI^ - PnPñ1Sn\\2

<\\PÑx\\2\\(Pn-Pn)(PñxSn)\\2

< \\PñX\\2\\(Pn + Pn)-1\\2\\(B'B + C'C + R)P^xSn\\2

<KXN

for some X £ (r, 1). This completes the proof.   D

In the proof above, an essential step is to show that each entry of the middle

section of the columns of Pn - Pn is of exponential decay. This indeed fol-

lows from i?N - PN) = (Pn + Pn)~x(B'B + C'C + R), the boundedness of

(Pn + TV)-1 , and the fact that each entry of the middle section of the columns
of B'B + CC + R is of exponential decay. This has its own interest. Thus, we

have the following

Theorem 2. Suppose that A is a positive operator and \\A - I\\2 < 1. Suppose
that A is a banded matrix. Let P be the unique square root of A and Pn =

In,ooP(In,ooY • Let Pn be a square root matrix such that PN = AN ■ Then

\\PNSN - PnSn\\2 < KXN

for some X £ (0, 1 ) and a constant K.

Finally, we remark that if ||^-/||2= 1, then each entry of the middle section

of the columns of R is convergent to 0 with speed ^ . The exponential decay

in the above has to be replaced by

\\PnSn - PnSn\\2 < ^T -

3. Computation of Battle-Lemarié's wavelets

Fix a positive integer m. Let A = B2m be the bi-infinite matrix whose

symbol is Y^k€zB2m(k)e~Jko}. Clearly, A is a banded Toeplitz matrix. To see

that A is a positive operator on I2, we show that A > ci for some c > 0 as

follows: For any x e I2 , we have

x'Ax=j-[   Fix)ico)FiA)i(ú)Fix)ioj) dco
2n J-n

= FiA)i0^f \Fix)iœ)\2dœ

>minFiA)i(ú)\\x\\22.
w

With c = minwFiA)iœ) > 0, we have A > ci. Similarly, we can show that
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11-4 - I\\2 < 1. Indeed,

||(4 - 7)x||2 = ¿ |* \FiA - I)ico)\2\F{x)iœ)\2 dco

= ^Jjl-FiA)ico)\2\Fix)ioj)\2dco

<max|l -FiA)ico)\2\\x\\22< ( 1 - minF(y4)(w) Nil

Thus, we have

||M-/)x||2<(l-mjnF(^)(ta))||x|b

and hence, \\A -1\\2 < 1. Thus, B2TO satisfies all the conditions of Theorem 1.
By (1), we have

.,   . 1 /sin&>/2\m

y/EkezB2m(k)e-Jk- V   co/2   J

Thus, <PÍt) = ¿ZkakBmit-k) with x = iak)keZ satisfying

C2mx = Ô   and   C22m = B2m .

Using our Theorem 1, we conclude that our numerical method is valid to com-

pute the ak\.

By (2), the transfer function is

H ico) = v -cosm(w/2).

Note that when m is even, then cosm(w/2) = (1 - (ejo> + e-J(°)/2)ml2, which

is a finite series. However, when m is odd, cosm(w/2) is no longer a finite
series. In order to compute i/(<y), let Sm be the Toeplitz matrix whose symbol

is cos2m(<y/2) = (1 - iejw + e~Jw)/2)m . Let Z be a zero insertion operator on

I2 defined by

7      7t   \ i   ^ :u Í x'/2   if'is even,
Zx = Z(x/)/ez = (z/)/€Z   with z¡, = i     '

i 0       if ms odd.

Thus, Hi(o) = Yikezßke-ikw with x = ißk)keZ satisfying

x = w*y *z,

where * denotes the convolution operator of two vectors in I2 and

y = CmS,    z = ZC~xS,    w = T¿

with C2, = B2m , T2, = Sw . Using our Theorems 1 and 2, we know that our

numerical method gives a good approximation to y and z. For m even, our

numerical method produces an xn which converges pointwise to x exponen-
tially. When m is odd, the remark after Theorem 2 has to be applied, and the

Wat produced by this procedure does no longer converge to w exponentially.
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By (3), the wavelet y/ associated with tp is given by

y/{2co) = e-JO}Hico + n)$ito).

Once {ak}k€Z and {ßk}kez are computed, {yk}kez can be obtained by con-
volution.

We have implemented this method to compute Battle-Lemarié's wavelets in

MATLAB. The graphs of Battle-Lemarié's wavelets are shown in the following

figures.
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