## The analysis of multigrid algorithms for pseudodifferential operators of order minus one

HTML articles powered by AMS MathViewer

- by James H. Bramble, Zbigniew Leyk and Joseph E. Pasciak PDF
- Math. Comp.
**63**(1994), 461-478 Request permission

## Abstract:

Multigrid algorithms are developed to solve the discrete systems approximating the solutions of operator equations involving pseudodifferential operators of order minus one. Classical multigrid theory deals with the case of differential operators of positive order. The pseudodifferential operator gives rise to a coercive form on ${H^{ - 1/2}}(\Omega )$. Effective multigrid algorithms are developed for this problem. These algorithms are novel in that they use the inner product on ${H^{ - 1}}(\Omega )$ as a base inner product for the multigrid development. We show that the resulting rate of iterative convergence can, at worst, depend linearly on the number of levels in these novel multigrid algorithms. In addition, it is shown that the convergence rate is independent of the number of levels (and unknowns) in the case of a pseudodifferential operator defined by a single-layer potential. Finally, the results of numerical experiments illustrating the theory are presented.## References

- Randolph E. Bank and Todd Dupont,
*An optimal order process for solving finite element equations*, Math. Comp.**36**(1981), no. 153, 35–51. MR**595040**, DOI 10.1090/S0025-5718-1981-0595040-2 - D. Braess and W. Hackbusch,
*A new convergence proof for the multigrid method including the $V$-cycle*, SIAM J. Numer. Anal.**20**(1983), no. 5, 967–975. MR**714691**, DOI 10.1137/0720066 - James H. Bramble and Joseph E. Pasciak,
*New convergence estimates for multigrid algorithms*, Math. Comp.**49**(1987), no. 180, 311–329. MR**906174**, DOI 10.1090/S0025-5718-1987-0906174-X - James H. Bramble and Joseph E. Pasciak,
*New estimates for multilevel algorithms including the $V$-cycle*, Math. Comp.**60**(1993), no. 202, 447–471. MR**1176705**, DOI 10.1090/S0025-5718-1993-1176705-9 - James H. Bramble and Joseph E. Pasciak,
*The analysis of smoothers for multigrid algorithms*, Math. Comp.**58**(1992), no. 198, 467–488. MR**1122058**, DOI 10.1090/S0025-5718-1992-1122058-0
—, - James H. Bramble, Joseph E. Pasciak, Jun Ping Wang, and Jinchao Xu,
*Convergence estimates for multigrid algorithms without regularity assumptions*, Math. Comp.**57**(1991), no. 195, 23–45. MR**1079008**, DOI 10.1090/S0025-5718-1991-1079008-4 - James H. Bramble, Joseph E. Pasciak, and Jinchao Xu,
*The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms*, Math. Comp.**56**(1991), no. 193, 1–34. MR**1052086**, DOI 10.1090/S0025-5718-1991-1052086-4 - James H. Bramble, Joseph E. Pasciak, and Jinchao Xu,
*Parallel multilevel preconditioners*, Math. Comp.**55**(1990), no. 191, 1–22. MR**1023042**, DOI 10.1090/S0025-5718-1990-1023042-6 - James H. Bramble and Jinchao Xu,
*Some estimates for a weighted $L^2$ projection*, Math. Comp.**56**(1991), no. 194, 463–476. MR**1066830**, DOI 10.1090/S0025-5718-1991-1066830-3 - Achi Brandt,
*Multi-level adaptive solutions to boundary-value problems*, Math. Comp.**31**(1977), no. 138, 333–390. MR**431719**, DOI 10.1090/S0025-5718-1977-0431719-X - A. Brandt and A. A. Lubrecht,
*Multilevel matrix multiplication and fast solution of integral equations*, J. Comput. Phys.**90**(1990), no. 2, 348–370. MR**1071880**, DOI 10.1016/0021-9991(90)90171-V - Paul L. Butzer and Hubert Berens,
*Semi-groups of operators and approximation*, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York, Inc., New York, 1967. MR**0230022**
P. Grisvard, - J.-F. Maitre and F. Musy,
*Algebraic formalisation of the multigrid method in the symmetric and positive definite case—a convergence estimation for the $V$-cycle*, Multigrid methods for integral and differential equations (Bristol, 1983) Inst. Math. Appl. Conf. Ser. New Ser., vol. 3, Oxford Univ. Press, New York, 1985, pp. 213–223. MR**849375** - J. Mandel, S. McCormick, and R. Bank,
*Variational multigrid theory*, Multigrid methods, Frontiers Appl. Math., vol. 3, SIAM, Philadelphia, PA, 1987, pp. 131–177. MR**972757** - J.-C. Nédélec and J. Planchard,
*Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $R^{3}$*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**7**(1973), no. R-3, 105–129 (French, with English summary). MR**424022** - T. von Petersdorff and E. P. Stephan,
*On the convergence of the multigrid method for a hypersingular integral equation of the first kind*, Numer. Math.**57**(1990), no. 4, 379–391. MR**1062360**, DOI 10.1007/BF01386417

*An efficient numerical procedure for the computation of steady state harmonic currents in flat plates*, IEEE Trans. on Mag.

**Mag-19**(1983), 2409-2412.

*Elliptic problems in non smooth domains*, Pitman, Boston, 1985. W. Hackbusch,

*Multi-grid methods and applications*, Springer-Verlag, New York, 1985.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Math. Comp.
**63**(1994), 461-478 - MSC: Primary 65N55
- DOI: https://doi.org/10.1090/S0025-5718-1994-1254145-2
- MathSciNet review: 1254145