## Closed-form summation of some trigonometric series

HTML articles powered by AMS MathViewer

- by Djurdje Cvijović and Jacek Klinowski PDF
- Math. Comp.
**64**(1995), 205-210 Request permission

## Abstract:

The problem of numerical evaluation of the classical trigonometric series \[ {S_\nu }(\alpha ) = \sum \limits _{k = 0}^\infty {\frac {{\sin (2k + 1)\alpha }}{{{{(2k + 1)}^\nu }}}\quad {\text {and}}\quad } {C_\nu }(\alpha ) = \sum \limits _{k = 0}^\infty {\frac {{\cos (2k + 1)\alpha }}{{{{(2k + 1)}^\nu }}},} \] where $\nu > 1$ in the case of ${S_{2n}}(\alpha )$ and ${C_{2n + 1}}(\alpha )$ with $n = 1,2,3, \ldots$ has been recently addressed by Dempsey, Liu, and Dempsey; Boersma and Dempsey; and by Gautschi. We show that, when $\alpha$ is equal to a rational multiple of $2\pi$, these series can in the general case be summed in closed form in terms of known constants and special functions. General formulae giving ${C_\nu }(\alpha )$ and ${S_\nu }(\alpha )$ in terms of the generalized Riemann zeta function and the cosine and sine functions, respectively, are derived. Some simpler variants of these formulae are obtained, and various special results are established.## References

- Milton Abramowitz and Irene A. Stegun (eds.),
*Handbook of mathematical functions, with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1966. MR**0208797** - J. Boersma and J. P. Dempsey,
*On the numerical evaluation of Legendre’s chi-function*, Math. Comp.**59**(1992), no. 199, 157–163. MR**1134715**, DOI 10.1090/S0025-5718-1992-1134715-0 - Kevin M. Dempsey, Dajin Liu, and John P. Dempsey,
*Plana’s summation formula for $\sum ^\infty _{m=1,3,\cdots }m^{-2}\sin (m\alpha ),m^{-3}\cos (m\alpha ),m^{-2}A^m,m^{-3}A^m$*, Math. Comp.**55**(1990), no. 192, 693–703. MR**1035929**, DOI 10.1090/S0025-5718-1990-1035929-9 - Walter Gautschi,
*On certain slowly convergent series occurring in plate contact problems*, Math. Comp.**57**(1991), no. 195, 325–338. MR**1079018**, DOI 10.1090/S0025-5718-1991-1079018-7 - M. Lawrence Glasser,
*The summation of series*, SIAM J. Math. Anal.**2**(1971), 595–600. MR**303156**, DOI 10.1137/0502058 - C. C. Grosjean,
*Formulae concerning the computation of the Clausen integral $\textrm {Cl}_2(\theta )$*, J. Comput. Appl. Math.**11**(1984), no. 3, 331–342. MR**777108**, DOI 10.1016/0377-0427(84)90008-6
E. R. Hansen, - Leonard Lewin,
*Polylogarithms and associated functions*, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR**618278** - L. Lewin,
*Some miscellaneous results*, Structural properties of polylogarithms, Math. Surveys Monogr., vol. 37, Amer. Math. Soc., Providence, RI, 1991, pp. 355–375. MR**1148387**, DOI 10.1090/surv/037/16 - Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni,
*Formulas and theorems for the special functions of mathematical physics*, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR**0232968**, DOI 10.1007/978-3-662-11761-3
J. Spanier and K. B. Oldham,

*A table of series and products*, Prentice-Hall, Englewood Cliffs, NJ, 1975.

*An atlas of functions*, Hemisphere Publishing, Washington, 1987.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp.
**64**(1995), 205-210 - MSC: Primary 65B10; Secondary 33E20, 65D20
- DOI: https://doi.org/10.1090/S0025-5718-1995-1270616-8
- MathSciNet review: 1270616