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FACTORS OF GENERALIZED FERMAT NUMBERS

HARVEY DUBNER AND WILFRID KELLER

Abstract. Generalized Fermât numbers have the form Fb<m = b1" +1 . Their

odd prime factors are of the form k • 2" + 1, k odd, n > m. It is shown

that each prime is a factor of some F¡, m for approximately 1 /k bases b ,

independent of n . Divisors of generalized Fermât numbers of base 6, base 10,

and base 12 are tabulated. Three new factors of standard Fermât numbers are

included.

1. Introduction

Generalized Fermât numbers (GFNs) are of the form

(1) Fb,m = b2m + i,  b>2.

When b is even, they have many characteristics of the heavily studied standard

Fermât numbers Fm = F2m. For example, they have no algebraic factors; they

may be prime; it is easy to prove primality; for a fixed base b, they are pairwise

relatively prime; all prime factors must be of the form

(2) P(k,n) = k-2"+ 1, kodd, n>m.

When b is odd, most of these properties are shared by the numbers Fbm/2.

In particular, all their prime factors are also of the form (2).

While investigating the generalized Fermât numbers, some interesting rela-

tionships concerning divisibility characteristics were observed and then proved.

Each prime (2) is shown to be a factor of some Fb m for almost exactly l/k of

the bases b, independent of « . It appears that the probability of each prime

dividing a standard Fermât number is also l/k .

Divisors of generalized Fermât numbers of base 6, base 10, and base 12 are

tabulated. Three new factors of standard Fermât numbers were discovered.

2. Divisibility results

There are approximately 160 known prime factors of Fermât numbers. It was

natural to see if these factors were also factors of any other generalized Fermât

numbers. What became immediately evident was that many of these factors

were also factors of a surprisingly large number of GFNs, that is, P(k, «)

divided some Fb m for many values of the base b . In fact, examining the data
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Table 1. Divisibility frequency. Bases tested from 2 to 1000,

10<«< 1000

Prime divisor
3 • 2" + 1 5 • 2" + 1 7 • 2" + 1

number number number

n       of bases n       of bases n of bases

12    320 13    190 14 180
18   319 15   196 20 135
30    337 25    195 26 147
36    340 39    192 50 133
41   340 55   212 52 130
66    331 75    204 92 157
189   335 85    208 120 134
201   326 127   232 174 136
209   328 average = 203.6 180 136

276   334 999/A: = 199.8 190 129
353   333 290 148
408   364 320 175
438   336 390 135
534   332 432 149

average = 333.9 616 141

999/fc = 333.0 830 148
average = 144.6

_999/k = 142.7

led to the observation that, on average, every prime P(k, n) is a factor for l/k

of all bases, independent of n .
This is illustrated in Table 1. For k ~ 3,5, and 7 all the primes P(k, n)

for « from 10 to 1000 were tested to see how many GFNs they divided. All

bases from 2 to 1000 were tested. In each case the average number of bases for

which P(k,n) is a factor is close to l/k times the number of bases considered.
Basically the same pattern occurred for all values of k and « that we tested.

The theoretical reason for this is developed in the next section.

3. Divisibility theory

The following [4, pp. 129-130] is Euler's criterion for the solvability of

(3) bN = c(modM).

If M is any modulus with a primitive root, and (c, M) = 1, then the congru-

ence (3) has a solution if and only if

(4) cfW)/d s ! (mod a/-) t    where d = (N, (p(M)).

Furthermore, when a solution exists, there are exactly d different solutions

modulo M.
Indeed, since the prime P(k, n) has a primitive root, we can apply the above

criterion for N = 2m, c = -1, and M = P(k, n). In this case tp(P(k, «)) =
k-2" and d = (2m , k-2") = 2m , so the condition (4) guaranteeing the existence

of a solution of

(5) b2m = -l (modP),        P = P(k,n)

becomes

(6) (-l)k'2"~m = 1 (n\odP),
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and this relation holds because n > m is assumed. We thus conclude that there

are d = 2m solutions with b < P of (5) for each m . But (5) is the equivalent

to saying that P divides Fb m for the base b in question (note that b = 0 and
b = 1 can never occur).

As the same reasoning applies to every m > 0, and for a given b the numbers

Fbm have no odd factors in common, the total number of different base-¿>

GFNs divisible by P is

n-l

(7) /3tot=^2"! = 2"-l,
m=0

hence the proportion of bases b < P which have a GFN divisible by P is

m h«     l - ll2"
{> P     k+l/2»'

This is almost exactly 1 ¡k for reasonably large «, a condition which holds for

almost all P of interest. In the particular case of k = 1, primes P = P(l, n)

are the Fermât primes, which actually divide numbers Fb >m for 2" - 1 of all

2" + 1 different bases modulo P.
If a prime divides GFNs for l/k of the bases, it is reasonable to assume

that the probability of dividing a GFN for a specific base is also l/k. On

average this must be true, but because of various obvious relationships between
bases, and correlations between factors for different bases such as those shown

by Riesel [8], one might expect that each base has to be considered separately.
However, we can make a plausible argument that the probability is always l/k,
irrespective of the base b or the prime P.

First we note that divisibility of a number Fb t m by a prime of the form

(2) implies b2" = 1 (modP). Conversely, if this relation holds for b > 1, an

integer m < « exists such that P divides Fbm. This follows by induction

from the fact that if some x satisfies x2 = 1 (modP), then x must equal +1

or -1 . Furthermore, by Fermat's little theorem, the prime P satisfies

(9) (b2")k = 1 (modP)

whenever (b, P) = 1. Here the value of b2" can only coincide with one of the

k different kth roots of unity modulo P, one of which is 1. Assuming that

the outcome of the computation of b2" modulo P behaves randomly, we can

expect it to be 1 with probability l/k . But as we have seen, b2" = 1 (modP)

is equivalent to the existence of some Fb m divisible by P.

We decided to examine the assumption for particular bases by computer. For-

tunately, extensive testing could be done because the second author maintains a

comprehensive list of primes of the form P(k, «), which is machine-readable

[5]. As of October 1, 1992, this list consisted of all primes with the limits on
k and « given in Table 2 (next page). The list had a total of 8,963 primes,
including 36 miscellaneous primes beyond these limits. By summing l/k over

the entire list the expected value for the number of factors is 67.5.

We tested each of these primes to see how many were factors of GFNs for
each of the bases from 2 to 15 which are not perfect powers. In general the test

results appeared to confirm the theory, since the average number of factors per
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Table 2. Prime table limits, October 1, 1992

k -limits
from      to

«-limits
from  to

33
65

121
213
501

31
63

119
211
499

1199

15000
12000
8000
4000
2500
1000

base was 68.4. Testing each base required 3.1 hours, using a PC 486/33 with

special-purpose number theory hardware [2].

4. Tables of factors

The procedures for finding factors of generalized Fermât numbers are iden-

tical to those that have been used for many years for finding factors of standard

Fermât numbers. Modern factoring methods are used for small values of m,

trial division by appropriately sieved numbers k-2" +1, not necessarily prime, is

used for small and medium values of « , and division by previously determined

primes P(k, n) is used for large values of « , where the residues required to

decide on effective divisibility are obtained by repeated squarings modulo the

possible factor (see also [6, p. 662]).
The division-by-prime method is particularly advantageous since any large

primes, discovered while testing for factors for a particular base, can be added

to the prime list [5] and are immediately available for testing other bases.

As a result of work done for this paper the prime list has been extended

considerably. The search limits are shown in Table 3, and the largest primes,

found for 3 < k < 31, are presented in Table 4. The lower bounds for the

searched ranges were suggested by previous work reported in the second part

of [6]. The entire prime list consists of 133,253 primes, 8,476 of which have

n > 1000. Since it took many thousands of hours over many years to find these

primes, the usefulness of the prime list is obvious. It takes about 17.5 hours to

determine which of these primes are factors for a particular base.

The expected value for the number of factors is about 91.3, and the real

frequencies for the bases tested are shown in Table 5. Here the agreement

between the expected value and the average number of factors is even more

pronounced. The standard Fermât numbers (base 2), in particular, behave like

GFNs for any other specific base. This observation can be of assistance to those

searching for factors of Fermât numbers.

Table 3. New prime table limits

^-limits

from      to

1
33
65

121
221

1201
2247

31
63

119
219

1199
2245

19999

«-limits
from      to

40000
12000
10000
8000
4000
2000
1200
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Table 4. Large new primes P(k, n)

21

«-limits

from   to
Primes found

«
3 21000 40000 34350
5 26000 40000 26607
7 16000 40000 16696, 22386
9 15000 40000 22603, 24422, 39186

11 15000 40000 15329, 18759, 28277
13 20000 40000 28280, 38008
15 15000 40000 19219, 21445, 21550, 24105, 24995, 34224, 34260
17 20000 40000
19 15000 40000 17034, 23290

15000 40000
23 20000 40000
25 15000 40000
27 15000 40000 19360, 30500, 38770
29 15000 40000 25723
31 20000 40000

17524, 27124, 29769

Table 5. Divisibility frequency for individual bases b

number

of factors

i

•

2
3
5
6
7
10
11
12
13
14
15

average =

expected =

78
100
106
74
94

104
88
96
85
74

102
91.0
91.3

:-Wl

Table 6. Numbers k-2n + \ tested by trial division for bases 6, 10, 12

«-limits
from      to        fe-limits

39   lOOOOOOO
■ .

i

.«P

10
40
51

101

201
301
401

50
100
200
300
400

1000

10000000
5000000
1000000
200000
100000
20000

Tables 7, 8, and 9 (see pp. 4Ö2-404) are tabulations of the prime factors of

base-6, base-10, and base-12 generalized Fermât numbers. The trial division

limits are shown in Table 6. Unfortunately, all the trial divisions must be

repeated for each base, but for these "small" divisors trial division still seems
to be the most efficient procedure. The total CPU time used on a Siemens

7-890-F computer for the trial divisions (three bases) was about 780 hours.
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Table 7. Prime factors k • 2" +1 of base-6 Fermât numbers 62"" +1

m n m n

0 C
1 c
2 C
3 C

4 C

5   C

6   C

7   C

8
9

10

11
15
19
21
22
23
25

27
32

1 3      prime (7)
2 9      prime (37)
4 81    prime (1297)
4 1
4 6175
5 11
5 53

10 4599
6 43
6 2275
7 155117027389401

11 2405301
7 3493619608100417
7 224638962477005164271
8 1
8 2983
8 196513
9 6232629
8 9138049087747333735

10 2913113677352280802497
9 26-digits

11 9
10 79
11 1641
11 447425285
13 45903
16 1472166285
16 1
20 13
23 6292737
24 3484503
24 2426623
26 37
27 1137
28 4725
28 193
35 1670619

35
41

40
36
41
43

41
43
43
45
48
51
57
60
62
63
65
67
67
80

83
85
89
93
97
97

98 100
100

113 117
118 119
126 127

127
156 157
166 167
179 180
187 188
197 199

33
35

36
39
40

42

44
47
50
56

57
61

63
64
66
78
79

84
85
92
96

21195
3
2601
60727
21
2517
191
567915
9360659
8249
712687
1025
509471
75
9643
592491
9
9
8699
357
2126397
1169
903
955085
341591
4160015
130893
2120097
141
136811
5
11
455585
191
211411
13
119361

201

203
244
261
275
298
319
342
344
370
373
380
389
403
431
641
662
829

1379
1420
1675
2294
2973
2992
3903
4437
4542
4642
4686
4726
6341
6801
6978
7964
9429

22385

202
209
247
262
276
300
320
346
347
371
374
382
390
405
432
642
664
830

1384
1422
1680
2297
2974
2993
3904
4438
4543
4644
4687
4727
6346
6804
6981
7967
9431

22386

7225

3
237
55
117007
267
7
26247
41139
5309
1093
105
7
16521
7
15295
891
7
81
357
921
9
43
185
25
19
11
21
5
29
33
15
21

9
9
7

Note: C means GFN is completely factored

Some of the factors for small m were taken from [1]. All the base-6 and

base-10 factors in Riesel's paper [9] were rediscovered.

The total number of factors contained in Tables 7, 8, and 9 is 365. From

the considerations leading to (7) the approximate frequencies of the differences

« - m occurring in a randomly chosen sample of 365 GFN factors can be
predicted. The following is a comparison of the expected and actually counted

frequencies:

n-m 1      2     3     4     56789
Expected    183   91    46   23    11    6   3    1    1
Counted    199   72    50    17    14   8   4
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Table 8. Prime factors k-2n + l of base-10 Fermât numbers 102m + l

m m n

0 C
1 C
2 C

3 C

4 C

5   C

6   C

7   C

8   C

9

11

12

15

16

17

18
19

20
22
26
29

5      prime (11)
25    prime (101)
9
17
1
367647
11
7

5
11
2183
155
15253
96679
6518964113895
9882899

8 59934250737848194603
7 31-digits
8 1

10 15
8 1771

11 113-digits
9 21
9 16121

13 1162719
9 142913093
9 222-digits

10 1479
10 294999
13 13050269
12 936342025557
12 2203924854324541
13 56021
13 88886432331741
16 1
19 11
17 63
19 335
21 305
20 67
21 101439
20 12838857
25 5
24 6061953
27 17
30 49

29
35

37
39
40

41

48
50
54

58
62
64
66
68
69
72
80
81

88
91

93
99 100

102 104
105

122 125
124 127
142 143
143 144

149
146 147
157 158
168 171
179 180
181 183
182 183
183 188
185 187
190 191
195 201
200 202
206 207
208 209
215 216
222 225

31
39

38
40
41
42

42
52
51

57
57
60

63
65
67
69
70
75

83
82
89
93
94

135
5
287443
52731
21
115
39
25
849
35535
3397839
45
9
63
9
15533
21573
5
1155045
13
14603
4695
1718239
3957
43
460745
755
5
29
841
3125
17
43
285
7
679731
227
13
21
1637
154865
267
87
3
143277
64619

226
243
260
270
284
324
380
388
461

550
615
625
749
842
892
990

1104

1147
1190
1286
1139
1370
1402
1628
1676
1919
1944
1960
2686
2731
3306
3353
3473
5147
6612
6837
6903
7926
7966
9960

23467
28276
38005
44684

227
244
262
271
291
325
381
389
462
552
616
626
750
844
894
993

1105
1148
1191
1287
1141
1373
1403
1631
1677
1921
1947
1961
2687
2732
3313
3354
3474
5152
6614
6838
6905
7927
7967
9961

23473
28277
38008
44685

1707
2661
19887
177

701
1283
23
101
4963
9103
7
63
459
1273
627
95
1551
67
299
207
1055
935
539
65
123
89
5
23
647
97
5
9
273
25
7
19
95
29
9
113
5
11
13
3

Note: C means GFN is completely factored

During this investigation the first author discovered three new prime factors

of standard Fermât numbers:

P(145,7312)|F7309,  P(ll, 18759) | F,8749, P(19, 23290) \ F2i2ii.

A list of presently known factors is available from the second author .
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Table 9. Prime factors k-2"+l of base-12 Fermât numbers 122"1-!-!

n m n

2   C

3   C

4   C

5   C

6   C

7   C

10
11

12

14
15
16
18

19

21

23

2
2
2
3
3
4
5
4
5
5
8
8
8
7
7

10
8
8
8
9
9

11
12
12
13
13
15
13
15
16

18
19
19
20
20
20
21
25
23
26

3   prime (13)
1
7
11
29
1
3
16297
4811
37528551509
3
30-digits
141
635
543905
71669658783177
33-digits
1
134-digits
16121
576716099
3187781
421
1111
19473
5
345
9479
5
1
1537305
11
41
141
13
151
13011
51
1140867
491997

26
29
30
38
39
40

30
30
32
41

41
44
46
43
43
52
57

60
64
67
65
70
69
89
90
92
98

100

42

51
56
58
63
64

66
68
66
87
91
97
99

126 127
127

127 129
129 133
136 140
143 144

146
185 187
202 204
204 211
207 209
215 216
226 231
237 238
307 308
319 320
334 335
351 353

327
49
63591
3
21
15
123 .
318471
11 ,
1
6071

U?5
2692?
9 '
215735
1254537
4398833
81

135
7
817399
200041
5
1031
158721
22839
30153
43
8019
21
2655
9
3

31
207
817
13

7
2495
3

408
485
513
516
529

. .556
■ 622
: 639

713
765
837
966

1010
1052
1178
1243
1310

1348
1540
1803
2288
2731
2811
2814
2872
3158
4343
4726
5946
6999
7926
8410
9429

20906
22601
26606
34222
42663

409
486
517
518
534
557
623
642
716
768
839
972

1011
1053
1179
1245
1312
1313
1349
1541
1804
2290
2733
2816
2817
2875
3165
4344
4727
5947
7000
7927
8411
9431

20909
22603
26607
34224
42665

113
283
15
39
597
6965
5525
13245
1233
17031
861
957
695
29
299
609
57
1053
1781
113
7
69
21
3
129
15
129
43
29
5
145
29
41

9
3
9
5
15
3

Note: C means GFN is completely factored

5. Future studies

As is very often the case, work done during the preparation of this article

suggests related areas of research which should be pursued. Many noticeable

deviations from statistical behavior have been observed empirically. For exam-

ple, all the primes with k = 3 (except the smallest one, P(3, 1) = 7) divide a

base-8 GFN, as is easily shown to be generally true. Other less evident regular-

ities, like the following, should be investigated theoretically. Three-quarters of

the known primes with k = 3 (actually, 19 out of 26) divide a base-3 GFN.
Also, about half the primes with k = 5 (8 out of 18) divide a base-2 GFN and
two-thirds of them (12 of the 18) divide a base-5 GFN.
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Riesel in 1969 [8] cleverly derived a method for using factors of generalized

Fermât numbers of one base to find factors for another base. For example, he

shows that for k = 5, if a prime divides a base-2 GFN, it also divides a de-

termined base-10 GFN. This work should be extended to obtain more stringent

relationships.
In general, not enough attention has been paid to GFNs with odd bases.

Although there has been some systematic searches for large GFN primes with

even bases [3], very little has been done to find primes of the form Fbm/2
for odd bases [7]. Also, finding factors of GFNs with odd bases is at least as

interesting as finding factors of GFNs with even bases.

It is obvious that the existence of an extensive list of primes of the form
(2) made the research for this paper practical. With the large and expanding

number of high-performance workstations and PCs that are available to the

academic community, it seems that a world-wide organized effort to expand

this list would be a logical project.
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