<table>
<thead>
<tr>
<th>Page</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxiii</td>
<td>line $l - 3, \ldots$</td>
</tr>
<tr>
<td>xxxv</td>
<td>line 9</td>
</tr>
<tr>
<td>xxxviii</td>
<td>line $l - 5$</td>
</tr>
<tr>
<td>xli</td>
<td>line 11</td>
</tr>
<tr>
<td>xli</td>
<td>line 16</td>
</tr>
<tr>
<td>xlii</td>
<td>line 8</td>
</tr>
<tr>
<td>xlii</td>
<td>line 9</td>
</tr>
<tr>
<td>xlii</td>
<td>line 13</td>
</tr>
<tr>
<td>xlii</td>
<td>line 18</td>
</tr>
<tr>
<td>xlii</td>
<td>line $l - 17$</td>
</tr>
<tr>
<td>xlii</td>
<td>line $l - 12$</td>
</tr>
<tr>
<td>xliii</td>
<td>line 6,7</td>
</tr>
<tr>
<td>xliii</td>
<td>line 14, 15</td>
</tr>
<tr>
<td>xliii</td>
<td>line 25</td>
</tr>
<tr>
<td>xliii</td>
<td>line $l - 9$</td>
</tr>
<tr>
<td>xliii</td>
<td>line $l - 5$</td>
</tr>
<tr>
<td>xliv</td>
<td>line $l - 9, \ldots$</td>
</tr>
<tr>
<td>xliv</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.132</td>
</tr>
</tbody>
</table>
TABLE ERRATA

13 0.243.2. For \(i \) read 1 in the upper limit of the integral.

20 0.320.3. For \(t \) read \(l \) in the limits of the integral.

27 1.211.1. For \(x^h \) read \(x^k \).

170 2.532.1. Insert a \(- \) sign before the first term on the right-hand side.

170 2.533.1. For \(\cos(a + b) \) read \(\cos(a + b)x \).

170 2.533.2. For \(\sin dx \) read \(\sin cx \, dx \).

263 line 7 Insert Cauchy before principal.

334 3.194.4. For \(\Re \nu \) read \(\Re \mu \).

353 3.313.2. For \(\beta \) read \(\beta \).

354 3.318.2. For \(\sqrt{\pi e} \) read \(\sqrt{\pi e} \).

354 3.322.1. For \(u > 0 \) read \(u \geq 0 \).

355 3.323.1. For \(\sim \) read \(= \); delete \([q \neq -2] \).

355 3.323.2. For \(\frac{\sqrt{x}}{p} \) read \(\frac{\sqrt{x}}{|p|} \); delete \([p > 0] \).

357 3.351.1. - 9. All these entries are superfluous. They can easily be deduced from the indefinite integrals in 2.32.

359 3.353.2. For \(n > 2 \) read \(n \geq 2 \).

359 3.353.5. Add \(n \geq 0 \) in the restrictions.

359 3.354.5. For \(\frac{\pi}{a} \) read \(\frac{\pi}{|a|} \);
for \([a > 0], p \) real read \([a \neq 0, p \) real].

360 3.355.3, 4. For \(\Im(a^2) > 0 \) read \(\Im(a^2) \neq 0 \).

365 3.383.5. For \(\Upsilon(q, q+1-\nu, p/a) \) read \(\Upsilon(q, q+1-\nu; p/a) \);
for \(0(a/p)^{N+1} \) read \(O((a/p)^{N+1}) \).

369 3.389.2. For \(\left| T^{1-\nu}_{1-\rho-\nu, 0, \frac{1}{2}} \right| \) read \(\left| 1 - \rho \right| \).

369 3.389.3. For \(L_{\nu+\frac{1}{2}} \) read \(L_{\nu+\frac{1}{2}} \).

371 3.411.6. For \(\beta^n \) read \(\beta^\mu \).

373 3.415.2. For \(B_{2k+2} \) read \(B_{2k+2} \).

373 3.416.3. For \(2^{2n} \) read \(2^{2n} \).

375 3.423.3. For \(a < 1 \) read \(-1 \leq a < 1 \).

376 3.423.4. For \(\Phi(\beta; \nu - 1; \mu) - (\mu - 1)\Phi(\beta; \nu; \mu) \) read
\(\Phi(\beta; \nu - 1, \mu) - (\mu - 1)\Phi(\beta, \nu, \mu) \).

376 3.424.2. For \(n! \) read \(-n! \); add \([a > -1, n = 1, 2, \ldots] \).

376 3.425.2. For \(B \) read \(B \).

382 3.461 This number is missing.

385 3.475.1. This term is incorrect. In [4, Table 92(14)], the first term reads \(\exp(-x^{2n}) \) instead of \(\exp(-x^2) \). From 3.475.2, on p. 386, and under the assumption that this integral is valid for all \(n \in \mathbb{Z} \), 3.475.1. can be written as

\[
\int_0^\infty \left\{ e^{-x^2} - \frac{1}{1 + x^{2n}} \right\} \frac{dx}{x} = -\frac{1}{2} C \quad [n \in \mathbb{Z}].
\]

This would also imply

\[
\int_0^\infty \frac{x^{2n-1} - x}{(1 + x^2)(1 + x^{2n})} \, dx = 0 \quad [n \in \mathbb{Z}].
\]

There is numerical evidence that the integrals in
TABLE ERRATA 451

3.475, and maybe others in this section, are also valid for noninteger values of \(n \).

391 3.5184. For \(2^{\mu + \nu - \rho} \beta \) read \(2^{\mu + \nu - \rho - 2B} \);
for \(2 - \frac{1}{2} \mu - \nu \) read \(\rho + 2 - \frac{1}{2} \mu - \nu \).

391 3.5185. For \(\text{Re}(2 + \rho) \text{Re}(\mu + \nu) \) read
\(\text{Re}(2 + \rho) > \text{Re}(\mu + \nu) \).

391 3.5186. For \(_2F_1 \) read \(\frac{1}{2} _2F_1 \); for \(2B \) read \(B \).

394 Insert 9. — after the double line.

394 3.5249. For "is divergent" read
\[\frac{\pi^3}{4b^3} \sin \frac{a\pi}{2b} \sec^3 \frac{a\pi}{2b} [b > |a|] \].

394 3.5249. - 23. Increase the numbers 9. to 23. by 1, thus read 10. to 24.

408 3.6127. Replace \(\cos x \) by \(\cos^{2m+1} x \); add \([n > m \geq 0] \).

410 3.614 For \(a < b \) read \(a^2 < b \) in third line.

415 3.63 In many of these integrals, add \([n \geq 0]\).

415 3.6312. Delete the factor 2 in the integrand.

416 3.6313. In the second line,
for \((2m - 2n - 3)!! \) read \((2n - 2m + 1)!! \);
in the third line,
for \((2m - 2n + 3)!! \) read \((2m - 2n - 3)!! \).

416 3.63115. Replace the clumsy second and third line by
\[
= [1 - (-1)^{m+n}] \frac{m!}{(m+n)!!} \left\{ \sum_{k=0}^{\min(m,n)-1} \frac{(m+n-2k-2)!!}{(m-k)!} + s \right\}
\]
where
\[
s = \begin{cases}
\begin{align*}
0 & \quad [n - m \leq 0 \text{ or } \frac{1}{2}(n - m) \text{ even}], \\
(n - m - 2)!! & \quad [n - m \text{ odd}], \\
2(n - m - 2)!! & \quad [\frac{1}{2}(n - m) \text{ odd}].
\end{align*}
\end{cases}
\]

416 3.63117. Replace the clumsy formula on top of p. 417 by [9, No. 2.5.12.24, 25.]
\[
= [1 + (-1)^{m+n}] \left\{ \begin{array}{ll}
0 & \quad [n < m], \\
\frac{sn!}{(n-m)!!(n+m)!!} & \quad [n \geq m]
\end{array} \right.
\]
\((s = \frac{1}{2}\pi \text{ if } n - m \text{ even, } s = 1 \text{ if } n - m \text{ odd.})\)

417 3.63120. For \(n \) read \(\nu \) (4 times).

418 3.6351. Replace the right-hand side by \(\frac{1}{2} \beta(\mu) \).

419 3.6352. For \(2^{p+2+n+1} \) read \(2^{p+2n+1} \).

422 3.6511. In the reviewer's copy this formula is mutilated. It should read
\[
\int_{0}^{\frac{\pi}{2}} \frac{\tan^\mu x \, dx}{1 + \sin x \cos x} = \frac{1}{3} \left[\psi \left(\frac{\mu + 2}{3} \right) - \psi \left(\frac{\mu + 1}{3} \right) \right].
\]

423 3.6532. Delete the factor 2 in the integrand.

445 3.7222., 4. For \(iab \) read \(ia\beta \).

445 3.7226., 8. For \(iab \) read \(ia\beta \).
TABLE ERRATA

452 3.7471. Add $\pi G - \frac{7}{2} \zeta(3)$ [m = 2].
458 3.7616. For $\mathbf{I} F_i(\mu; u + 1; ia) + \mathbf{I} F_i(\mu; u + 1; -ia)$ read
$\mathbf{I} F_i(\mu; u + 1; ia) + \mathbf{I} F_i(\mu; u + 1; -ia)$.
461 3.7664. Replace $\Gamma(2(\mu + \frac{1}{2}))$ by $\Gamma(2\mu + 1)$.
465 3.77112. For $s_1(\nu-1)\lambda^1$ read $s_1(\nu-1)\lambda^1$.
467 3.7736. For $0 \leq m < n + \frac{1}{2}$ read $0 \leq m \leq n$.
471 3.8124. Delete [divergent if $a^2 = 0$].
477 3.8125. For $0 \neq a^2 \neq 1$ read $0 < a^2 < 1$;
delete [divergent if $a^2 = 0$].
480 3.8162. For $\frac{a}{2}$ read $\frac{\pi}{a}$.
484 3.8243. For $\mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$ read π^a.

The simpler formula

$$\frac{\pi}{2^{2m+1}a} \sum_{k=0}^{m} (-1)^k \binom{2m}{m-k} e^{-2ka}$$

which has been proposed in [1] is incorrect; for $m = 1$, it yields $\frac{\pi}{2a} (2 - e^{-2a})$ instead of $\frac{\pi}{4a} (1 - e^{-2a})$ [9, No. 2.5.6.11].

484 3.8244. For $\sin^{2m+1}x$ read $\sin^{2m+1}x$.
484 3.8245. Replace the right-hand side by the simpler formula

$$\frac{\pi}{2^{2m+1}a} e^{-2m+1} \sum_{k=0}^{m} (-1)^{m+k+1} \binom{2m+1}{k} e^{2ka}.$$

Delete BI ((160))(15).

484 3.8246. For 2^{2m} read $2^{2m}a$.
495 3.8365. Delete $I_n(b) = \frac{\pi}{b}$;

for $n(2^{n-1}n!)^{-1}$ read $\frac{\pi}{2^{n-2}(n-1)!}$;

write second line as $[0 \leq b < n, \ n \geq 1, \ r = (n-b)/2]$.

512 3.8934. Replace first line by 4. — ; delete second and third

lines.
514 3.89510. Delete $[p \neq 0]$.
514 3.89512. For $a \geq 0$ read $a > 0$.
515 3.8991. For p^2x^2 read $-p^2x^2$.
556 4.2125. For $1 + \ln x$ read $a + \ln x$.
560 4.22411. This entry is confused and should be given as follows:

$$\int_0^{\frac{\pi}{2}} \ln(1 + a \sin x)^2 \, dx$$

$$= \pi \ln(a/2) + 4G + 4 \sum_{k=1}^{\infty} \frac{b^k}{k} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1} \quad [a > 0],$$

$$= -\pi \ln 2 - 4G \quad [a = -1];$$

$$b = (1 - a)/(1 + a).$$
Note the unusual notation $\ln(1 + a \sin x)^2$. It occurs also in other formulas and means $2 \ln |1 + a \sin x|$. Delete $BI((308))(5,6,7,8)$.

562. 4.227 4. For n even, the right-hand side is equal to $\frac{1}{2} \left(\frac{\pi}{n} \right)^{n+1} |E_n|$.
562. 4.227 5. Replace the right-hand side by $\left(\frac{\pi}{n} \right)^{2n+1} |E_{2n}|$.
564. 4.231 5. For $[0 < a < 1]$ read $[a > 0]$.
564. 4.231 7. - 10. By replacing the parameters in the right-hand side by their absolute values, the restrictions can be replaced by $[ab \neq 0]$. There are more of such cases.

565. 4.233 3. For $2 \pi^2$ read $7 \pi^2$.
570. 4.253 6. For " $\mu - a$ is not a natural number" read $|\arg a| < \pi$.
570. 4.253 7. For $- \sum_{k=1}^{n-2} \frac{1}{k} - 2 \sum_{k=n+1}^{2n-3} \frac{1}{k}$ read $-2 \sum_{k=1}^{n-1} \frac{1}{2k-1}$;

For $a > 0$ read $|\arg a| < \pi$, $n = 1, 2, \ldots$.
573. 4.261 17. For $\psi^7(\mu)$ read $\psi'(\mu)$.
575. 4.267 3. For $\frac{1}{2} (n - 1)$ read $[\frac{1}{2} (n - 1)]$.
589. 4.293 9. Replace $-\psi(1)$ by $+C$.
603. 4.335 3. Replace $-\psi''(1)$ by $+2 \zeta(3)$.
603. 4.337 4. For $\frac{\theta}{\beta - \pi}$ read $|\frac{\theta}{\beta - \pi}|$; delete " β cannot be a real positive number.".
606. 4.356 4. - 6. Delete the text before the formula.
607. 4.358 4. For $\frac{\Gamma(\nu)}{\nu}$ read $\Gamma(\nu)$.
612. 4.376 8. Move $[n = 1, 2, \ldots, a > 0]$ to first line; move $BI((356))(2)$ to second line.
613. 4.384 2. Delete the incorrect second line.
626. 4.416 4. The two results given are incorrect. Replace them by $\frac{1}{2} ((-1)^n(n - 1)!(1 - 2^{-(n+1)}) \zeta(n + 1)$. Delete $BI((287))(20)$.
632. 4.441 1. For ξ read ξ.
661. 5.56 The footnote is misleading. For example, $\int I_1(x) \, dx = I_0(x)$.
672. 6.244 1., 2. For $[\sin(p \pi x)]$ read $\sin(p \pi x)$.
689. 6.443 4. Replace 0 on the right-hand side by $\frac{2}{\pi^2} \left[\frac{1}{(2n + 1)^2} (C + \ln 2\pi) + 2 \sum_{k=2}^{\infty} \frac{\ln k}{4k^2 - (2n + 1)^2} \right]$. Delete NH 203(6).
691. 6.465 1. Replace 0 on the right-hand side by $\left(-\frac{2}{\pi} \left[C + \ln 2\pi + 2 \sum_{k=2}^{\infty} \frac{\ln k}{4k^2 - 1} \right] \right)$. Delete NH 204. Note the relation to 6.443 4.
Table Errata

691 6.469 2. For $= 0$ read \(\frac{n}{1 - n^2} \); for \([n - \text{odd}] \) read \([n > 1 \text{ odd}] \).

693 6.512 2. For $\Gamma(1 - \nu + k)$ read $\Gamma(1 + \nu + k)$ in second line. Replace the third line, which does not contain new information, by [2]: For $0 < a < b$, interchange a and b in the right-hand side.

704 6.541 3. For $(x^2 + z^2)^p$ read $(x^2 + z^2)^p$. The notation
\[
\Gamma \left[\begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right] = \frac{\Gamma(a_1) \cdots \Gamma(a_p)}{\Gamma(b_1) \cdots \Gamma(b_q)}
\]
used in this entry is apparently not defined.

709 6.561 13. For $a^{\mu+1}$ read $a^{\mu+1} \Gamma$.

717 6.577 1. For $1 + \Re \mu - 2n$ read $2 + \Re \mu - 2n$.

717 6.577 2. For $\Re \nu - 2n + 1$ read $\Re \nu - 2n + 2$.

718 6.584 5. This integral is probably wrong. In any case it is divergent for certain values of μ.

730 6.613 For x^2 read x^2.

742 6.646 3. For $e^{-b x}$ read $e^{-b s}$.

743 6.647 3. For $-(\alpha/2)$ read $-(\alpha/2)$.

778 6.753 3., 4. The complicated form of the results for these two integrals, which are newly introduced without giving a reference, differs considerably from the results given in [10, No. 2.12.25.3., 2.15.11.2] for more general integrals. Also, it is unclear why these integrals have not been introduced as \(6.753\,7\) and \(6.753\,8\). The integrals \(6.753\,3\) and \(6.753\,4\), in the previous edition [6], which are now deleted, are not covered by \(6.753\,5\) and \(6.753\,6\), as it might appear at first glance.

830 7.229 This formula is identical to 7.228. Delete.

847 7.391 9. For $\Gamma(\alpha - \beta + m)$ read $\Gamma(\sigma - \beta + m)$.

853 7.422 2. In [14], referring to the previous edition [6], this formula is said to be incorrect, in particular for $n = 0$, $\sigma = 0$, $\alpha = 1$. It does not necessarily become correct merely by excluding these values, as has been done. Also sign errors are now present in the superscript of the first L on the right-hand side. The problem lies, however, in the interchanged subscripts of the two L on the right-hand side. Numerical tests suggest that:
For $L_{n-m}^{\sigma+m-n}$ read $L_{m}^{\sigma-m+n}$; for $L_{n}^{\nu-\sigma+m-n}$ read $L_{n}^{\nu-\sigma-m-n}$; retain from the restrictions only $[y > 0$, $\Re \alpha > 0$, $\Re \nu > -1]$.

871 7.629 1. For \sqrt{as} read \sqrt{as}.

887 7.683 For $\frac{\mu-a-1}{1}$ read $\frac{\mu-a-1}{2}$ in the subscript of M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
TABLE ERRATA 455

914 8.130 8. Delete "which is not a constant".
926 8.178 2. For t^1u read tu.
926 8.18–19 The notation used for the theta functions in this volume is deplorably inconsistent, not only with respect to the letters θ and θ'. See in particular formulas 8.199(1)-(3) and §6.16.
928 8.186 In the equation, for ∂_z read $\partial\tau$.
929 8.189 1. For $\vartheta_4(i)$ read $\vartheta_4(u)$.
935 8.215 Replace this entry by [7, p. 33],

$$\text{Ei}(z) = \frac{e^z}{z} \left[\sum_{k=0}^{n} \frac{k!}{z^k} + r_n(z) \right], \quad |r_n(z)| = O(|z|^{-n-1}),$$

$[z \to \infty, |\arg(-z)| \leq \pi - \delta; \delta > 0 \text{ small}].$

$|r_n(z)| \leq (n+1)!|z|^{-n-1}$ $[\Re z \leq 0].$

935 8.216 Presumably, for $O(n^0)$ read $O(1)$; for n large read $n \to \infty$.
937 8.234 1. Delete the comma in the upper limit of the integral.
939 8.252 5. For $4x2$ read $4x^2$.
939 8.254 Replace this entry by [7, p. 19],

$$\Phi(z) = 1 - \frac{e^{-z^2}}{\sqrt{\pi}z} \left[\sum_{k=0}^{n} (-1)^k \frac{(2k-1)!!}{(2z^2)^k} + O(|z|^{-2n-2}) \right],$$

$[z \to \infty, |\arg(-z)| \leq \pi - \delta; \delta > 0 \text{ small}].$

942 8.310 2. Delete "$\Gamma(z)$ satisfies the relation".
943 8.315 Add (For C see 8.310 2.).; Delete "for z, not an integer".
944 8.315 2. According to [8, p. 81–82], replace this entry by

$$\int_{-\infty}^{\infty} \frac{e^{b+i\pi}}{(a+it)^z} dt = \frac{2\pi e^{-ab}z^{-1}}{\Gamma(z)},$$

$$\int_{-\infty}^{\infty} \frac{e^{-b+i\pi}}{(a+it)^z} dt = 0$$

$[\Re a > 0, b > 0, \Re z > 0, |\arg(a+it)| < \frac{1}{2}\pi]$. 946 8.335 For n^{mx} read n^{nx}.
948 8.341 2. For ω read w in the upper limit of the integral.
949 8.344 For $\cos L^{2n-1}$ read \cos^{2n-1}.
949 8.350 2. For 0 read x in the lower limit of the integral.
950 8.352 3. Replace $\Gamma(0, x)$ by $-\text{Ei}(-x)$.
952 8.36 There exist a number of important formulas for $\psi(z)$ and $\psi^{(n)}(x)$ which are not given. See [3, §§6.3–4].
953 8.363 8. Add $= (-1)^{n+1} n! \zeta(n+1, x)$.
956 8.372 1. For $[-x \in \mathbb{N}]$ read $[-x \notin \mathbb{N}]$.
956 8.372 2. Add $[-x \notin \mathbb{N}]$.
956 8.372 3. Add $[-x \notin \mathbb{N}]$. Add after this formula:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\(\beta(x) \) has simple poles at \(x = -n \) with residue \((-1)^n\).

957 8.374 For \([-x \in \mathbb{N}] \) read \([-x \notin \mathbb{N}] \). Delete the line after this formula.

960 8.391 For \(\frac{\chi^p}{p^2} F_1 \) read \(\frac{\chi^p}{p} F_1 \).

961 8.405 Delete “for an arbitrary Bessel function \(Z_\nu(z) \), that is,” in the line after the formula.

961 line 11 For Bessel functions of imaginary argument read Modified Bessel functions.

961 8.4111. For \([n= a \text{ natural number}] \) read \([n = 0, 1, 2, \ldots] \).

963 8.4125. Replace \(\{\Gamma(\frac{1}{2} - \nu)\}^{-1} \neq 0 \) by \(\nu \neq \frac{1}{2}, \frac{3}{2}, \ldots \).

964 8.4126. Add the drawing.

\[\beta(x) \]

\[\\beta(x) \]

\\
\[\begin{array}{c}
-\pi + i\infty \\
\pi + i\infty \\
\end{array} \]

\\
\[x \]

\\
\[y \]

-\pi 0 \pi

969 8.4326. For \(z^2 \) read \(z^2 \).

969 8.4327. For \(-\frac{\pi}{2} \) read \(-\frac{\pi}{2} \); for \(|\arg z| = \) read \(|\arg z| = \).

970 8.4421. Delete the two lines after the formula (except WA 174(1)).

970 8.4422. In the arguments of \(F \), for \(-\nu, -k; \mu - 1; \) read \(-\nu - k; \mu + 1; \)

971 line 5 For \(Kn \) read \(K_n \).

976 8.4551. Add \([x > n]\) in third line.

979 8.471 Add: \(Z \) denotes \(J, N, H^{(1)}, H^{(2)} \) or any linear combination of these functions, the coefficients in which are independent of \(z \) and \(\nu \).

979 8.472 ditto.

980 8.47610. For \(H^{(2)}_\nu(z) \) read \(H^{(2)}_\nu(z) \).

981 8.485 Read \(\sin \nu \pi \) in the denominator.

982 8.4867. For \(l_n(z) \) read \(I_n(z) \).

982 8.4868. For \(l_1(z) \) read \(I_1(z) \).

982 8.4861. - 3. Delete the restrictions, they are meaningless.

983 8.4864., 5. ditto.

986 8.4961. Presumably, for \(Z_2(2i\sqrt{z}) \) read \(Z_2(2i\sqrt{z}) \).

987 8.4962. Presumably, for \(Z_{\frac{1}{2}}(\frac{3}{2}iz^{\frac{1}{3}}) \) read \(Z_{\frac{1}{2}}(\frac{3}{2}iz^{\frac{1}{3}}) \).

987 8.4963. Presumably, for \(Z_{10}(2iz^{-\frac{1}{4}}) \) read \(Z_{10}(2iz^{-\frac{1}{4}}) \).

1013 8.6714. Presumably, for \(\pi \sqrt{a} \) read \(\pi \sqrt{a} \).

1014 8.701 There is confusion on notation. In the previous edition [6, p. 999], the symbols \(P_\nu(a) \), \(Q_\nu(a) \) on line
TABLE ERRATA

5 were said to denote single-valued and regular solutions of 8.700 1. for $|z| < 1$, whereas the symbols $P^\alpha_\nu(z), Q^\alpha_\nu(z)$ on line 8 were said to be used for such solutions with $\Re z > 1$. However, the formulas in 7.1-7.2 of [6] give the impression that the contrary is true. In this volume, the same symbols $P^\alpha_\nu(z), Q^\alpha_\nu(z)$ are presented on both lines 4 and 6, thus making the lines 4 to 7 unintelligible. The (probably) unnecessary distinction between P, Q and P^ν, Q^ν remains in other places, in particular in 7.1-7.2, but no detailed check has been made whether these notations are consistent within any definition.

1032 8.811 For equation read representation.
1045 8.913 2. For simple read closed.
1065 9.100 Add "also called Gaussian hypergeometric function."
1071 9.137 For functions read formulas.
1073 9.153 4. For $F(1 + m', -m)$ read $F(1 + m' - m)$.
1075 line l - 12 For "the pair, unity" read one.
1080 9.180 1-4. Delete "Region of convergence" before the formula; place the restrictions (in []) on the line of the formula.

1083 9.183 3. For $(-y)^\beta$ read $(-y)^{-\beta}$ in second line [11, No. 7.2.4.39].
1088 9.227 For $\pi - \alpha < 0$ read $\pi - \alpha < \pi$.
1095 9.255 3. For z^2 read z^2.
1096 9.301 For b_1, \ldots, b_2 read b_1, \ldots, b_q.
1096 line l - 1 Delete the comma after $p < q$.
1097 9.303-4 Delete *).
1099 9.34 7. For $(a, b : c : -x)$ read $(a, b; c; -x)$.
1100 9.5 Mixing the Riemann zeta function $\zeta(z)$ and the generalized zeta function $\zeta(z, q)$ in this section is unfortunate. In particular, it is unusual to extend the name of Riemann to $\zeta(z, q)$. This function has little in common with $\zeta(z)$ other than $\zeta(z) = \zeta(z, 1)$ and $(2^z - 1)\zeta(z) = \zeta(z, \frac{1}{2})$.

1102 9.523 1. Replace this formula by

$$\zeta(z) = \prod_p \frac{1}{1 - p^{-z}} \quad [\Re z > 1].$$

1102 9.523 3. For Δ read Λ in the formula and in the line after it; add $[\Re z > 1]$ in the formula, delete it in the line.

1103 9.537 The separate entries 9.537 and 9.561, 9.562 on p. 1105 are confusing. They should be combined to read

9.537 1. $\zeta(z) = \pi^{-\frac{1}{2}z}(z - 1)\Gamma\left(\frac{1}{2}z + 1\right)\zeta(z) = \zeta(1 - z)$.
9.537 2. $\Xi(t) = \zeta\left(\frac{1}{2} + it\right) = \Xi(-t)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Delete the line after 9.537.

For $\zeta(z, q)$ read $\zeta(z)$.

For $0 \leq \Re z \leq 1$ read $0 < \Re z < 1$.

It would be interesting to insert a remark that the first $1,500,000,001$ zeros lying in $0 < \Im z < 545,439,823.215$ are known [13] to have $\Re z = \frac{1}{2}$.

Delete the whole section (see p. 1103, 9.537 above).

For $B_{2n}(-1)^{n-1}$ read $B_{2n} = (-1)^{n-1}$; for $\prod_{p=2}^{\infty}$ read \prod_p.

For $\nu(Sx)$ read $\nu(x)$.

This table of the Bernoulli numbers should be rearranged properly.

Insert $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}$ before the numerical value.

Add $S_n^{(0)} = \delta_{0n}$; $S_n^{(1)} = (-1)^{n-1}(n-1)!$; $S_n^{(3)} = 1$.

Add $G_n^{(0)} = \delta_{0n}$; $G_n^{(1)} = G_n^{(3)} = 1$.

In the headline of the table, for s read S; in the column for $S_{m}^{(m)}$: for 118121 read 118124.

For $2\Im z$ read $2i\Im z$.

For $\bar{1}$ read 1.

For A^+ read A^+ (5 times).

For $x \neq 0$ read $x \neq 0$ (twice); for $Q(x)$ read $Q(x)$.

For e^{Az} read e^{Az} (twice).

For e^{lz} read e^{lz}.

For “when the following results” read “then the following statements”.

For $F(s) + G(s)$ read $aF(s) + bG(s)$.

For $d \zeta$ read $d \zeta$.

For x^ν, $\nu > -1$ read x^ν, $\Re \nu > -1$.

For $(\sqrt{x^2 + a^2})^{(\frac{1}{2})}(\sqrt{x^2 + a^2})^{(\frac{1}{2})}$ read $\Gamma(n + \frac{1}{2})$.

Here and in other cases, e.g., p. 1188, 17.33.18, p. 1191, 17.34.13, only the simplest special case is taken from the source. There, the result for $x^n \sin ax$ is given.

For $b \Re a$ read $|\Re a|$.

Replace the right-hand side by $s^{-1}(s + a^2)^{-\frac{1}{2}}[(s + a^2)^{-\frac{1}{2}} - a]$.

Move the restriction on $\Re \nu$ to the left column. (Also in other formulas on this page.)

For $x^{-(\nu+1)}$ read $x^{\nu+1}$.

For $|x|$ read x.

Replace $\delta(x - a)$, a real by $\delta(ax + b)$, $a, b \in \mathbb{R}$, $a \neq 0$; replace $e^{-a\xi}$ by $e^{-b\xi/a}$.

The Fourier transform of $1/|x|$ leads to a divergent integral. Delete.
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Number</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1184</td>
<td>17.23</td>
<td>8.</td>
<td>For Rea read a ∈ ℝ.</td>
</tr>
<tr>
<td>1184</td>
<td>17.23</td>
<td>10.</td>
<td>Delete ζ > 0.</td>
</tr>
<tr>
<td>1185</td>
<td>17.23</td>
<td>15.</td>
<td>For i(π/2)^ν e^{−ξ a} read i sgn ξ (π/2)^ν e^{−a</td>
</tr>
<tr>
<td>1185</td>
<td>17.23</td>
<td>23.</td>
<td>For (2/π^3) read (2π^3).</td>
</tr>
<tr>
<td>1185</td>
<td>17.23</td>
<td>24.</td>
<td>For x^ν sgn x, ν < −1 but not integral read x^n sgn x, n = 1, 2, ...; for (−iξ)^{−(1+ν)ν!} read n!(−iξ)^{−n−1}. ([12, p. 506])</td>
</tr>
<tr>
<td>1185</td>
<td>17.23</td>
<td>25.</td>
<td>Replace the formula in the right-hand column by (2/π)^ν Γ(ν+1)</td>
</tr>
<tr>
<td>1185</td>
<td>17.23</td>
<td>26.</td>
<td>For (2π) read (2π).</td>
</tr>
<tr>
<td>1188</td>
<td>17.33</td>
<td>11.</td>
<td>According to [9, No. 2.5.9.11]: For (x^2 + a^2)−ν^{−3/2} read (x^2 + a^2)^{−ν^{−3/2}}.</td>
</tr>
<tr>
<td>1188</td>
<td>17.33</td>
<td>13.</td>
<td>For (2π)^{−1} read π/8.</td>
</tr>
<tr>
<td>1189</td>
<td>17.33</td>
<td>33.</td>
<td>For sinh(aξ) read sinh(aξ)/ξ.</td>
</tr>
<tr>
<td>1190</td>
<td>17.34</td>
<td>40.</td>
<td>For K_0(ab) read K_0(ab)/b.</td>
</tr>
<tr>
<td>1190</td>
<td>17.34</td>
<td>34.</td>
<td>In all the headings of this table (pp. 1190–1193), insert ζ > 0 after F_2(ζ); delete ζ > 0 elsewhere in the table.</td>
</tr>
</tbody>
</table>
| 1188 | 17.33 | 11. | According to [9, No. 2.5.9.11]: For (x^2 + a^2)−ν^{−1/2} read (x^2 + a^2)^{−ν^{−1/2}}; replace the right-hand side by \[
\frac{\xi^{ν+1}}{\sqrt{2}(2a)^ν Γ(ν + \frac{3}{2})} K_ν(aξ).
\]
| 1191 | 17.34 | 6. | For 0 < ν < 1 read 0 < Reν < 1. | | |
| 1191 | 17.34 | 14. | For Reν > a read Reν > 0. |
| 1191 | 17.34 | 16. | For |a|^{−1} read a^{−1}. |
| 1192 | 17.34 | 21. | For ζ > 2a read ζ < 2a. |
| 1192 | 17.34 | 22. | For α > 0, Reβ > 0 read a > 0, Re b > 0. |
| 1192 | 17.34 | 24. | For (x^2 + a^2)^{1/2} read (x^2 + a^2)^{−1/2}. |
| 1193 | 17.34 | 33. | For (e^{−bξ} − e^{−aξ}) read (e^{−bξ} − e^{−aξ})/ξ. |
| 1195 | 17.43 | 8−11. | Presumably, H(1−x) is the Heaviside step function. |
| 1197 | 17.43 | 27. | For Γ(s) read (1−2^{−s})Γ(s); for Re s > 2 read Re s > 0. |
| 1198 | BU | | There exists an English edition; see [5]. Also p. 1202, line 7 and p. 1203, line 18. |
| 1202 | line 2 | | For Losch read Lösch. |
| 1202 | line 3 | | For Neilsen read Nielsen. |

Acknowledgment. I am indebted to Dr. G. Dôme (CERN) for pointing out some errors in [6].

K. S. KÖLBIG
CERN
CN Division
CH-1211 Geneva 23
Switzerland