A posteriori error estimates for boundary element methods
HTML articles powered by AMS MathViewer
 by Carsten Carstensen and Ernst P. Stephan PDF
 Math. Comp. 64 (1995), 483500 Request permission
Abstract:
This paper deals with a general framework for a posteriori error estimates in boundary element methods which is specified for three examples, namely Symm’s integral equation, an integral equation with a hypersingular operator, and a boundary integral equation for a transmission problem. Based on these estimates, an analog of Eriksson and Johnson’s adaptive finite element method is proposed for the hversion of the Galerkin boundary element method for integral equations of the first kind. The efficiency of the approach is shown by numerical experiments which yield almost optimal convergence rates even in the presence of singularities.References

M. Asadzadeh and K. Eriksson, An adaptive finite element method for a potential problem, Preprint.
J. Bergh and J. Löfström, Interpolation spaces, Springer, Berlin, 1976.
I. Babuška and A. Miller, A posteriori error estimates and adaptive techniques for the finite element method, Tech. Note BN968, Institute for Physical Science and Technology, Univ. of Maryland, College Park, MD, 1981.
 Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, DOI 10.1137/0519043
 M. Costabel and E. Stephan, The normal derivative of the double layer potential on polygons and Galerkin approximation, Applicable Anal. 16 (1983), no. 3, 205–228. MR 712733, DOI 10.1080/00036818308839470
 Martin Costabel and Ernst Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, Mathematical models and methods in mechanics, Banach Center Publ., vol. 15, PWN, Warsaw, 1985, pp. 175–251. MR 874845
 Martin Costabel and Ernst Stephan, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl. 106 (1985), no. 2, 367–413. MR 782799, DOI 10.1016/0022247X(85)901180
 Carsten Carstensen and Ernst P. Stephan, Adaptive boundary element methods for some first kind integral equations, SIAM J. Numer. Anal. 33 (1996), no. 6, 2166–2183. MR 1427458, DOI 10.1137/S0036142993253503 —, Adaptive boundary element methods for transmission problems, Preprint, 1993.
 Kenneth Eriksson and Claes Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp. 50 (1988), no. 182, 361–383. MR 929542, DOI 10.1090/S0025571819880929542X
 Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), no. 1, 43–77. MR 1083324, DOI 10.1137/0728003
 V. J. Ervin and E. P. Stephan, A boundary element Galerkin method for a hypersingular integral equation on open surfaces, Math. Methods Appl. Sci. 13 (1990), no. 4, 281–289. MR 1074091, DOI 10.1002/mma.1670130402
 V. J. Ervin, N. Heuer, and E. P. Stephan, On the $h$$p$ version of the boundary element method for Symm’s integral equation on polygons, Comput. Methods Appl. Mech. Engrg. 110 (1993), no. 12, 25–38. MR 1255010, DOI 10.1016/00457825(93)90017R L. Hörmander, Linear partial differential operators., SpringerVerlag, BerlinHeidelbergNew York, 1963.
 Claes Johnson and Peter Hansbo, Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech. Engrg. 101 (1992), no. 13, 143–181. Reliability in computational mechanics (Kraków, 1991). MR 1195583, DOI 10.1016/00457825(92)90020K
 J.L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, SpringerVerlag, New YorkHeidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177 J.C. Nedelec, La méthode des éléments finis appliquée aux équations intégrales de la physique, First meeting AFCETSMF on applied mathematics Palaiseau, Vol. 1, 1978, pp. 181190.
 F. V. Postell and E. P. Stephan, On the $h$, $p$ and $h$$p$ versions of the boundary element method—numerical results, Comput. Methods Appl. Mech. Engrg. 83 (1990), no. 1, 69–89. MR 1078696, DOI 10.1016/00457825(90)901256
 E. Rank, Adaptive boundary element methods (invited contribution), Boundary elements IX, Vol. 1 (Stuttgart, 1987) Comput. Mech., Southampton, 1987, pp. 259–278. MR 965323
 Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGrawHill, Inc., New York, 1991. MR 1157815
 J. Saranen and W. L. Wendland, Local residualtype error estimates for adaptive boundary element methods on closed curves, Appl. Anal. 48 (1993), no. 14, 37–50. MR 1278122, DOI 10.1080/00036819308840148
 I. H. Sloan and A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: theory, IMA J. Numer. Anal. 8 (1988), no. 1, 105–122. MR 967846, DOI 10.1093/imanum/8.1.105
 Ernst P. Stephan, Boundary integral equations for screen problems in $\textbf {R}^3$, Integral Equations Operator Theory 10 (1987), no. 2, 236–257. MR 878247, DOI 10.1007/BF01199079
 W. L. Wendland and De Hao Yu, Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math. 53 (1988), no. 5, 539–558. MR 954769, DOI 10.1007/BF01397551
 W. L. Wendland and De Hao Yu, A posteriori local error estimates of boundary element methods with some pseudodifferential equations on closed curves, J. Comput. Math. 10 (1992), no. 3, 273–289. MR 1167929
Additional Information
 © Copyright 1995 American Mathematical Society
 Journal: Math. Comp. 64 (1995), 483500
 MSC: Primary 65N38
 DOI: https://doi.org/10.1090/S00255718199512777647
 MathSciNet review: 1277764