## Balancing domain decomposition for mixed finite elements

HTML articles powered by AMS MathViewer

- by Lawrence C. Cowsar, Jan Mandel and Mary F. Wheeler PDF
- Math. Comp.
**64**(1995), 989-1015 Request permission

## Abstract:

The rate of convergence of the Balancing Domain Decomposition method applied to the mixed finite element discretization of second-order elliptic equations is analyzed. The Balancing Domain Decomposition method, introduced recently by Mandel, is a substructuring method that involves at each iteration the solution of a local problem with Dirichlet data, a local problem with Neumann data, and a "coarse grid" problem to propagate information globally and to insure the consistency of the Neumann problems. It is shown that the condition number grows at worst like the logarithm squared of the ratio of the subdomain size to the element size, in both two and three dimensions and for elements of arbitrary order. The bounds are uniform with respect to coefficient jumps of arbitrary size between subdomains. The key component of our analysis is the demonstration of an equivalence between the norm induced by the bilinear form on the interface and the ${H^{1/2}}$-norm of an interpolant of the boundary data. Computational results from a message-passing parallel implementation on an INTEL-Delta machine demonstrate the scalability properties of the method and show almost optimal linear observed speed-up for up to 64 processors.## References

- Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - D. N. Arnold and F. Brezzi,
*Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates*, RAIRO Modél. Math. Anal. Numér.**19**(1985), no. 1, 7–32 (English, with French summary). MR**813687**, DOI 10.1051/m2an/1985190100071 - Steven F. Ashby, Thomas A. Manteuffel, and Paul E. Saylor,
*A taxonomy for conjugate gradient methods*, SIAM J. Numer. Anal.**27**(1990), no. 6, 1542–1568. MR**1080338**, DOI 10.1137/0727091 - J.-F. Bourgat, Roland Glowinski, Patrick Le Tallec, and Marina Vidrascu,
*Variational formulation and algorithm for trace operator in domain decomposition calculations*, Domain decomposition methods (Los Angeles, CA, 1988) SIAM, Philadelphia, PA, 1989, pp. 3–16. MR**992000** - J. H. Bramble, J. E. Pasciak, and A. H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. I*, Math. Comp.**47**(1986), no. 175, 103–134. MR**842125**, DOI 10.1090/S0025-5718-1986-0842125-3 - James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz,
*The construction of preconditioners for elliptic problems by substructuring. IV*, Math. Comp.**53**(1989), no. 187, 1–24. MR**970699**, DOI 10.1090/S0025-5718-1989-0970699-3 - Susanne C. Brenner,
*A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method*, SIAM J. Numer. Anal.**29**(1992), no. 3, 647–678. MR**1163350**, DOI 10.1137/0729042 - F. Brezzi,
*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 129–151 (English, with French summary). MR**365287** - Franco Brezzi, Jim Douglas Jr., Ricardo Durán, and Michel Fortin,
*Mixed finite elements for second order elliptic problems in three variables*, Numer. Math.**51**(1987), no. 2, 237–250. MR**890035**, DOI 10.1007/BF01396752 - Franco Brezzi, Jim Douglas Jr., Michel Fortin, and L. Donatella Marini,
*Efficient rectangular mixed finite elements in two and three space variables*, RAIRO Modél. Math. Anal. Numér.**21**(1987), no. 4, 581–604 (English, with French summary). MR**921828**, DOI 10.1051/m2an/1987210405811 - Franco Brezzi, Jim Douglas Jr., and L. D. Marini,
*Two families of mixed finite elements for second order elliptic problems*, Numer. Math.**47**(1985), no. 2, 217–235. MR**799685**, DOI 10.1007/BF01389710 - Franco Brezzi and Michel Fortin,
*Mixed and hybrid finite element methods*, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR**1115205**, DOI 10.1007/978-1-4612-3172-1 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174**
L. C. Cowsar, - Lawrence C. Cowsar and Mary F. Wheeler,
*Parallel domain decomposition method for mixed finite elements for elliptic partial differential equations*, Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, 1990) SIAM, Philadelphia, PA, 1991, pp. 358–372. MR**1106473** - Yann-Hervé De Roeck and Patrick Le Tallec,
*Analysis and test of a local domain-decomposition preconditioner*, Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, 1990) SIAM, Philadelphia, PA, 1991, pp. 112–128. MR**1106455**
L. J. Durlofsky and M. C. H. Chien, - Roland Glowinski, Gene H. Golub, Gérard A. Meurant, and Jacques Périaux (eds.),
*First International Symposium on Domain Decomposition Methods for Partial Differential Equations*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. MR**972509** - Roland Glowinski, Yuri A. Kuznetsov, Gérard Meurant, Jacques Périaux, and Olof B. Widlund (eds.),
*Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. MR**1106444** - Roland Glowinski and Mary Fanett Wheeler,
*Domain decomposition and mixed finite element methods for elliptic problems*, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 144–172. MR**972516**
J. L. Lions and E. Magenes, - Jan Mandel,
*Balancing domain decomposition*, Comm. Numer. Methods Engrg.**9**(1993), no. 3, 233–241. MR**1208381**, DOI 10.1002/cnm.1640090307
J. Mandel and M. Brezina, - J.-C. Nédélec,
*Mixed finite elements in $\textbf {R}^{3}$*, Numer. Math.**35**(1980), no. 3, 315–341. MR**592160**, DOI 10.1007/BF01396415 - P.-A. Raviart and J. M. Thomas,
*A mixed finite element method for 2nd order elliptic problems*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR**0483555**
T. F. Russell and M. F. Wheeler, - Alan Weiser and Mary Fanett Wheeler,
*On convergence of block-centered finite differences for elliptic problems*, SIAM J. Numer. Anal.**25**(1988), no. 2, 351–375. MR**933730**, DOI 10.1137/0725025
O. B. Widlund, An extension theorem for finite element spaces with three applications, Numerical Techniques in Continuum Mechanics (W. Hackbusch and K. Witsch, eds.), GAMM, 1987, pp. 110-122.
—,

*Domain decomposition methods for nonconforming finite element spaces of Lagrange-type*, Sixth Copper Mountain Conference on Multigrid Methods (N. D. Nelson, T. A. Manteuffel, and S. F. McCormick, eds.), NASA CP 3224, Hampton, VA, 1993, pp. 93-109. —,

*Dual-variable Schwarz methods for mixed finite elements*, Numer. Math., submitted.

*Development of a mixed finite-element based compositional reservoir simulator*, Proceedings 12th SPE Symposium on Reservoir Simulation, SPE, Inc., 1993, Society of Petroleum Engineers, pp. 221-231. G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley,

*A users’ guide to PICL*:

*A portable instrumented communication library*, Tech. Rep. ORNL/TM-11616, Oak Ridge National Laboratory, Aug. 1990.

*Non-homogeneous boundary value problems and applications*, Springer-Verlag, Berlin and New York, 1972.

*Balancing domain decomposition*:

*theory and performance in two and three dimensions*, Report No. 2, Center for Computational Mathematics, University of Colorado at Denver, 1993. J. Necas,

*Les méthodes directes en théorie des équations elliptiques*, Academia, Prague, 1967.

*Finite element and finite difference methods for continuous flows in porous media*, Mathematics of Reservoir Simulation (R. E. Ewing, ed.), SIAM, Philadelphia, PA, 1983, ch. II, pp. 35-106. J. M. Thomas,

*Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes*, thèse d’état, Université Pierre et Marie Curie, Paris, 1977.

*Iterative substructuring methods*:

*Algorithms and theory for problems in the plane*, in Glowinski et al. [20], pp. 113-128.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp.
**64**(1995), 989-1015 - MSC: Primary 65N55
- DOI: https://doi.org/10.1090/S0025-5718-1995-1297465-9
- MathSciNet review: 1297465