On orders of optimal normal basis generators
HTML articles powered by AMS MathViewer
- by Shuhong Gao and Scott A. Vanstone PDF
- Math. Comp. 64 (1995), 1227-1233 Request permission
Abstract:
In this paper we give some experimental results on the multiplicative orders of optimal normal basis generators in ${F_{{2^n}}}$ over ${F_2}$ for $n \leq 1200$ whenever the complete factorization of ${2^n} - 1$ is known. Our results show that a subclass of optimal normal basis generators always have high multiplicative orders, at least $O(({2^n} - 1)/n)$, and are very often primitive. For a given optimal normal basis generator $\alpha$ in ${F_{{2^n}}}$ and an arbitrary integer e, we show that ${\alpha ^e}$ can be computed in $O(n \cdot v(e))$ bit operations, where $v(e)$ is the number of 1’s in the binary representation of e.References
- G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone, An implementation for a fast public-key cryptosystem, J. Cryptology 3 (1991), no. 2, 63–79. MR 1113370, DOI 10.1007/BF00196789 G. B. Agnew, R. C. Mullin, and S. A. Vanstone, An implementation of elliptic curve cryptosystems over ${F_{{2^{155}}}}$, IEEE J. on Selected Areas in Communications 11 (1993), 804-813. E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson, Fast exponentiation with precomputation, Proc. Eurocrypt’92, Balatonfured, Hungary, 1992.
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^n \pm 1$, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. $b=2,3,5,6,7,10,11,12$ up to high powers. MR 996414, DOI 10.1090/conm/022
- David G. Cantor and Erich Kaltofen, On fast multiplication of polynomials over arbitrary algebras, Acta Inform. 28 (1991), no. 7, 693–701. MR 1129288, DOI 10.1007/BF01178683
- Shuhong Gao and Hendrik W. Lenstra Jr., Optimal normal bases, Des. Codes Cryptogr. 2 (1992), no. 4, 315–323. MR 1194773, DOI 10.1007/BF00125200
- Joachim von zur Gathen, Efficient and optimal exponentiation in finite fields, Comput. Complexity 1 (1991), no. 4, 360–394. MR 1172675, DOI 10.1007/BF01212964
- D. H. Lehmer, On certain chains of primes, Proc. London Math. Soc. (3) 14a (1965), 183–186. MR 177964, DOI 10.1112/plms/s3-14A.1.183
- Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR 1429394 A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, Applications of finite fields, Kluwer, Boston-Dordrecht-Lancaster, 1993.
- R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson, Optimal normal bases in $\textrm {GF}(p^n)$, Discrete Appl. Math. 22 (1988/89), no. 2, 149–161. MR 978054, DOI 10.1016/0166-218X(88)90090-X
- A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292 (German, with English summary). MR 292344, DOI 10.1007/bf02242355
- D. R. Stinson, Some observations on parallel algorithms for fast exponentiation in $\textrm {GF}(2^n)$, SIAM J. Comput. 19 (1990), no. 4, 711–717. MR 1053938, DOI 10.1137/0219049
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp. 64 (1995), 1227-1233
- MSC: Primary 11T30; Secondary 11Y05, 11Y16
- DOI: https://doi.org/10.1090/S0025-5718-1995-1297469-6
- MathSciNet review: 1297469