Upper semicontinuity of attractors for linear multistep methods approximating sectorial evolution equations
HTML articles powered by AMS MathViewer
- by Adrian T. Hill and Endre Süli PDF
- Math. Comp. 64 (1995), 1097-1122 Request permission
Abstract:
This paper sets out a theoretical framework for approximating the attractor $\mathcal {A}$ of a semigroup $S(t)$ defined on a Banach space X by a q-step semidiscretization in time with constant steplength k. Using the one-step theory of Hale, Lin and Raugel, sufficient conditions are established for the existence of a family of attractors $\{ {\mathcal {A}_k}\} \subset {X^q}$, for the discrete semigroups $S_k^n$ defined by the numerical method. The convergence properties of this family are also considered. Full details of the theory are exemplified in the context of strictly $A(\alpha )$-stable linear multistep approximations of an abstract dissipative sectorial evolution equation.References
- Wolf-Jürgen Beyn, On invariant closed curves for one-step methods, Numer. Math. 51 (1987), no. 1, 103–122. MR 884136, DOI 10.1007/BF01399697
- J. C. Butcher, On the convergence of numerical solutions to ordinary differential equations, Math. Comp. 20 (1966), 1–10. MR 189251, DOI 10.1090/S0025-5718-1966-0189251-X
- Michel Crouzeix, On multistep approximation of semigroups in Banach spaces, Proceedings of the 2nd international conference on computational and applied mathematics (Leuven, 1986), 1987, pp. 25–35. MR 920377, DOI 10.1016/0377-0427(87)90123-3
- J. Dieudonné, Treatise on analysis. Vol. III, Pure and Applied Mathematics, Vol. 10-III, Academic Press, New York-London, 1972. Translated from the French by I. G. MacDonald. MR 0350769
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Timo Eirola and Olavi Nevanlinna, What do multistep methods approximate?, Numer. Math. 53 (1988), no. 5, 559–569. MR 954770, DOI 10.1007/BF01397552
- C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal. 30 (1993), no. 6, 1622–1663. MR 1249036, DOI 10.1137/0730084
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- D. F. Griffiths and A. R. Mitchell, Stable periodic bifurcations of an explicit discretization of a nonlinear partial differential equation in reaction diffusion, IMA J. Numer. Anal. 8 (1988), no. 4, 435–454. MR 975605, DOI 10.1093/imanum/8.4.435
- E. Hairer, A. Iserles, and J. M. Sanz-Serna, Equilibria of Runge-Kutta methods, Numer. Math. 58 (1990), no. 3, 243–254. MR 1075156, DOI 10.1007/BF01385623 E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations, Vol. I, Springer, Berlin, 1987.
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1991. Stiff and differential-algebraic problems. MR 1111480, DOI 10.1007/978-3-662-09947-6
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Jack K. Hale, Xiao-Biao Lin, and Geneviève Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp. 50 (1988), no. 181, 89–123. MR 917820, DOI 10.1090/S0025-5718-1988-0917820-X
- Jack K. Hale and Geneviève Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl. (4) 154 (1989), 281–326. MR 1043076, DOI 10.1007/BF01790353
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244 A. T. Hill, Attractors for nonlinear convection-diffusion equations and their numerical approximation, D. Phil. Thesis, Oxford, 1992. A. T. Hill and E. Süli, Upper semicontinuity of attractors for linear multistep methods, University of Bath Mathematics Preprint 94/11.
- Eugene Isaacson and Herbert Bishop Keller, Analysis of numerical methods, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0201039
- A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Numer. Anal. 10 (1990), no. 1, 1–30. MR 1036645, DOI 10.1093/imanum/10.1.1
- A. Iserles, A. T. Peplow, and A. M. Stuart, A unified approach to spurious solutions introduced by time discretisation. I. Basic theory, SIAM J. Numer. Anal. 28 (1991), no. 6, 1723–1751. MR 1135763, DOI 10.1137/0728086
- A. Iserles and A. M. Stuart, Unified approach to spurious solutions introduced by time discretization. II. BDF-like methods, IMA J. Numer. Anal. 12 (1992), no. 4, 487–502. MR 1186731, DOI 10.1093/imanum/12.4.487
- Urs Kirchgraber, Multistep methods are essentially one-step methods, Numer. Math. 48 (1986), no. 1, 85–90. MR 817122, DOI 10.1007/BF01389443
- U. Kirchgraber, F. Lasagni, K. Nipp, and D. Stoffer, On the application of invariant manifold theory, in particular to numerical analysis, Bifurcation and chaos: analysis, algorithms, applications (Würzburg, 1990) Internat. Ser. Numer. Math., vol. 97, Birkhäuser, Basel, 1991, pp. 189–197. MR 1109521, DOI 10.1007/978-3-0348-7004-7_{2}3
- P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations, SIAM J. Numer. Anal. 23 (1986), no. 5, 986–995. MR 859010, DOI 10.1137/0723066
- P. E. Kloeden and J. Lorenz, A note on multistep methods and attracting sets of dynamical systems, Numer. Math. 56 (1990), no. 7, 667–673. MR 1031440, DOI 10.1007/BF01405195
- Marie-Noëlle Le Roux, Semi-discrétisation en temps pour les équations d’évolution paraboliques lorsque l’opérateur dépend du temps, RAIRO Anal. Numér. 13 (1979), no. 2, 119–137 (French, with English summary). MR 533878, DOI 10.1051/m2an/1979130201191
- Christian Lubich and Olavi Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), no. 2, 293–313. MR 1112225, DOI 10.1007/BF01931289
- C. Palencia, Stability of rational multistep approximations of holomorphic semigroups, Math. Comp. 64 (1995), no. 210, 591–599. MR 1277770, DOI 10.1090/S0025-5718-1995-1277770-2
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Robert Skeel, Analysis of fixed-stepsize methods, SIAM J. Numer. Anal. 13 (1976), no. 5, 664–685. MR 428717, DOI 10.1137/0713055
- Daniel Stoffer, General linear methods: connection to one step methods and invariant curves, Numer. Math. 64 (1993), no. 3, 395–408. MR 1206671, DOI 10.1007/BF01388696
- Andrew Stuart, Nonlinear instability in dissipative finite difference schemes, SIAM Rev. 31 (1989), no. 2, 191–220. MR 997456, DOI 10.1137/1031048
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp. 64 (1995), 1097-1122
- MSC: Primary 65J05; Secondary 34G20, 47H20, 47N20, 58F13, 65L06, 65M12
- DOI: https://doi.org/10.1090/S0025-5718-1995-1297470-2
- MathSciNet review: 1297470