Twenty-two primes in arithmetic progression
HTML articles powered by AMS MathViewer
- by Paul A. Pritchard, Andrew Moran and Anthony Thyssen PDF
- Math. Comp. 64 (1995), 1337-1339 Request permission
Abstract:
Some newly-discovered arithmetic progressions of primes are presented, including five of length twenty-one and one of length twenty-two.References
- Emil Grosswald, Arithmetic progressions that consist only of primes, J. Number Theory 14 (1982), no. 1, 9–31. MR 644898, DOI 10.1016/0022-314X(82)90055-5
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- Richard K. Guy, Canadian Number Theory Association unsolved problems 1988, Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 193–206. MR 1106661 A. Moran and P. A. Pritchard, The design of a background job on a local-area network, Proceedings 14th Australian Computer Science Conference (G. Gupta, ed.), Australian Computer Science Communications 13 (1991), 17-1-17-11.
- Paul A. Pritchard, A case study of number-theoretic computation: searching for primes in arithmetic progression, Sci. Comput. Programming 3 (1983), no. 1, 37–63. MR 730934, DOI 10.1016/0167-6423(83)90003-5
- Paul A. Pritchard, Long arithmetic progressions of primes: some old, some new, Math. Comp. 45 (1985), no. 171, 263–267. MR 790659, DOI 10.1090/S0025-5718-1985-0790659-1
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp. 64 (1995), 1337-1339
- MSC: Primary 11A41; Secondary 11Y11
- DOI: https://doi.org/10.1090/S0025-5718-1995-1297475-1
- MathSciNet review: 1297475