## Conjugacy classes of $\Gamma (2)$ and spectral rigidity

HTML articles powered by AMS MathViewer

- by Ralph Phillips PDF
- Math. Comp.
**64**(1995), 1287-1306 Request permission

## Abstract:

The free group $\Gamma (2)$ is generated by $A = (1\;2,0\;1)$ and $B = (1\;0, - 2\;1)$, and setting ${\chi _{(\xi ,\eta )}}(A) = \exp (2\pi i\xi ),{\chi _{(\xi ,\eta )}}(B) = \exp (2\pi i\eta )$ defines a unitary character on $\Gamma (2)$ for $0 \leq \xi ,\eta < 1$. A program is devised to compute \[ \mu ({\text {tr}}) = \sum {{\chi _{(\xi ,\eta )}}({\text {conj}}. {\text {class}}),} \] summed over all primitive conjugacy classes of $\Gamma (2)$ of trace tr. Combined with a Luo-Sarnak theorem, this yields lower bounds for the spectral variance for a large sampling of characters in the range $0 < \xi ,\eta < 1$. The results indicate that the Berry conjecture for spectral rigidity does not hold for this set of classically chaotic systems. The program is also used to compute \[ \theta (x) = \sum {\ln (N(\{ \gamma \} )),} \] summed over all primitive conjugacy classes of $\Gamma (2)$ of norm $N(\{ \gamma \} ) \leq x$. The function $\theta (x)$ is asymptotic to*x*, and the remainder can be written as $|\theta (x) - x| = {x^\beta }$. The values of $\beta (x)$ are computed for all traces between 3202 and 4802 (here $x = {\text {tr}^2} - 2$). The $\beta$’s cluster around 0.6, attaining a maximum of $2/3$. Finally, it is proved that the remainder $\theta (x) - x$ has a negative bias by showing that the mean normalized remainder converges to a negative limit.

## References

- R. Aurich, E. B. Bogomolny, and F. Steiner,
*Periodic orbits on the regular hyperbolic octagon*, Phys. D**48**(1991), no. 1, 91–101. MR**1098656**, DOI 10.1016/0167-2789(91)90053-C - M. V. Berry,
*Semiclassical theory of spectral rigidity*, Proc. Roy. Soc. London Ser. A**400**(1985), no. 1819, 229–251. MR**805089** - Dennis A. Hejhal,
*The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I*, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR**0439755**, DOI 10.1007/BFb0079608 - Henryk Iwaniec,
*Prime geodesic theorem*, J. Reine Angew. Math.**349**(1984), 136–159. MR**743969**, DOI 10.1515/crll.1984.349.136 - W. Luo and P. Sarnak,
*Number variance for arithmetic hyperbolic surfaces*, Comm. Math. Phys.**161**(1994), no. 2, 419–432. MR**1266491**, DOI 10.1007/BF02099785 - Ralph Phillips and Zeév Rudnick,
*The circle problem in the hyperbolic plane*, J. Funct. Anal.**121**(1994), no. 1, 78–116. MR**1270589**, DOI 10.1006/jfan.1994.1045 - R. Phillips and P. Sarnak,
*The spectrum of Fermat curves*, Geom. Funct. Anal.**1**(1991), no. 1, 80–146. MR**1091611**, DOI 10.1007/BF01895418 - R. Phillips and P. Sarnak,
*Cusp forms for character varieties*, Geom. Funct. Anal.**4**(1994), no. 1, 93–118. MR**1254311**, DOI 10.1007/BF01898362 - Charles Schmit,
*Quantum and classical properties of some billiards on the hyperbolic plane*, Chaos et physique quantique (Les Houches, 1989) North-Holland, Amsterdam, 1991, pp. 331–370. MR**1188422** - Atle Selberg,
*Collected papers. Vol. I*, Springer-Verlag, Berlin, 1989. With a foreword by K. Chandrasekharan. MR**1117906** - Scott A. Wolpert,
*Disappearance of cusp forms in special families*, Ann. of Math. (2)**139**(1994), no. 2, 239–291. MR**1274093**, DOI 10.2307/2946582

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp.
**64**(1995), 1287-1306 - MSC: Primary 11F72; Secondary 11Y70
- DOI: https://doi.org/10.1090/S0025-5718-1995-1303088-5
- MathSciNet review: 1303088