On the convergence rate of the cell discretization algorithm for solving elliptic problems
HTML articles powered by AMS MathViewer
 by Maria Cayco, Leslie Foster and Howard Swann PDF
 Math. Comp. 64 (1995), 13971419 Request permission
Abstract:
Error estimates for the cell discretization algorithm are obtained for polynomial bases used to approximate both ${H^k}(\Omega )$ and analytic solutions to selfadjoint elliptic problems. The polynomial implementation of this algorithm can be viewed as a nonconforming version of the hp finite element method that also can produce the continuous approximations of the hp method. The examples provided by our experiments provide discontinuous approximations that have errors similar to the finite element results.References

E. Anderson et al., LAPACK users’guide, SIAM, Philadelphia, PA, 1991.
 Ivo Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1972/73), 179–192. MR 359352, DOI 10.1007/BF01436561
 Ivo Babuška and Milo R. Dorr, Error estimates for the combined $h$ and $p$ versions of the finite element method, Numer. Math. 37 (1981), no. 2, 257–277. MR 623044, DOI 10.1007/BF01398256
 I. Babuška and Manil Suri, The optimal convergence rate of the $p$version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776. MR 899702, DOI 10.1137/0724049 —, The hp version of the finite element method with quasiuniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987), 198238.
 I. Babuška and Manil Suri, The treatment of nonhomogeneous Dirichlet boundary conditions by the $p$version of the finite element method, Numer. Math. 55 (1989), no. 1, 97–121. MR 987158, DOI 10.1007/BF01395874
 Ivo Babuška and Manil Suri, The $p$ and $h$$p$ versions of the finite element method, an overview, Comput. Methods Appl. Mech. Engrg. 80 (1990), no. 13, 5–26. Spectral and high order methods for partial differential equations (Como, 1989). MR 1067939, DOI 10.1016/00457825(90)90011A
 James H. Bramble, The Lagrange multiplier method for Dirichlet’s problem, Math. Comp. 37 (1981), no. 155, 1–11. MR 616356, DOI 10.1090/S00255718198106163567
 Mark Coffey, John Greenstadt, and Alan Karp, The application of cell discretization to a “circle in the square” model problem, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 917–939. MR 848570, DOI 10.1137/0907062 J. Dongarra et al., LINPACK users’ guide, SIAM, Philadelphia, PA, 1979.
 Milo R. Dorr, The approximation of solutions of elliptic boundaryvalue problems via the $p$version of the finite element method, SIAM J. Numer. Anal. 23 (1986), no. 1, 58–77. MR 821906, DOI 10.1137/0723005
 Milo R. Dorr, On the discretization of interdomain coupling in elliptic boundaryvalue problems, Domain decomposition methods (Los Angeles, CA, 1988) SIAM, Philadelphia, PA, 1989, pp. 17–37. MR 992001
 Alan George and Joseph W. H. Liu, Computer solution of large sparse positive definite systems, PrenticeHall Series in Computational Mathematics, PrenticeHall, Inc., Englewood Cliffs, N.J., 1981. MR 646786
 W. Govaerts and J. D. Pryce, Mixed block elimination for linear systems with wider borders, IMA J. Numer. Anal. 13 (1993), no. 2, 161–180. MR 1210820, DOI 10.1093/imanum/13.2.161
 J. Greenstadt, Cell discretization, Conference on Applications of Numerical Analysis (Univ. Dundee, Dundee, 1971), Lecture Notes in Math., Vol. 228, Springer, Berlin, 1971, pp. 70–85. MR 0411208
 John Greenstadt, The cell discretization algorithm for elliptic partial differential equations, SIAM J. Sci. Statist. Comput. 3 (1982), no. 3, 261–288. MR 667828, DOI 10.1137/0903017 —, The application of cell discretization to nuclear reactor problems, Nuclear Sci. and Engrg. 82 (1982), 7895.
 John Greenstadt, Cell discretization of nonselfadjoint linear elliptic partial differential equations, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1074–1108. MR 1114975, DOI 10.1137/0912057 P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, New York, 1985. B. Guo and I. Babuška, The hp version of the finite element method. Part 1: The basic approximation results; Part 2: General results and applications, Comput. Mech. 1 (1986), 2141, 203226.
 P.A. Raviart and J. M. Thomas, Primal hybrid finite element methods for $2$nd order elliptic equations, Math. Comp. 31 (1977), no. 138, 391–413. MR 431752, DOI 10.1090/S00255718197704317528
 John R. Rice and Ronald F. Boisvert, Solving elliptic problems using ELLPACK, Springer Series in Computational Mathematics, vol. 2, SpringerVerlag, Berlin, 1985. With appendices by W. R. Dyksen, E. N. Houstis, Rice, J. F. Brophy, C. J. Ribbens and W. A. Ward. MR 772025, DOI 10.1007/9781461250180
 Gilbert Strang and George J. Fix, An analysis of the finite element method, PrenticeHall Series in Automatic Computation, PrenticeHall, Inc., Englewood Cliffs, N.J., 1973. MR 0443377 H. Swann and M. Nishimura, Implementation of the cell discretization algorithm for solving elliptic partial differential equations, CAM1688, Center for Applied Mathematics and Computer Science, San José, CA, 1988; revision, 1990.
 Howard Swann, On the use of Lagrange multipliers in domain decomposition for solving elliptic problems, Math. Comp. 60 (1993), no. 201, 49–78. MR 1149294, DOI 10.1090/S00255718199311492942
 J. Wloka, Partial differential equations, Cambridge University Press, Cambridge, 1987. Translated from the German by C. B. Thomas and M. J. Thomas. MR 895589, DOI 10.1017/CBO9781139171755
Additional Information
 © Copyright 1995 American Mathematical Society
 Journal: Math. Comp. 64 (1995), 13971419
 MSC: Primary 65N30
 DOI: https://doi.org/10.1090/S00255718199512974647
 MathSciNet review: 1297464