Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Voronoĭ-algorithm expansion of two families with period length going to infinity
HTML articles powered by AMS MathViewer

by Brigitte Adam PDF
Math. Comp. 64 (1995), 1687-1704 Request permission

Abstract:

We consider families of orders of complex cubic fields introduced recently by Levesque and Rhin and find the Voronoï-algorithm expansions and the fundamental units. We compare with the Jacobi-Perron algorithm expansions.
References
  • B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR 0160744
  • E. Dubois, Approximations diophantiennes simultanées de nombres algébriques. Calcul des meilleures approximations, Thèse de doctorat d’état, Univ. Pierre et Marie Curie, Paris, 1980.
  • E. Dubois and A. Farhane, Unité fondamentale dans des familles d’ordres cubiques, Utilitas Math. 47 (1995), 97–115 (French, with French summary). MR 1330891
  • A. Fahrane, Spécialisation de points extrémaux. Applications aux fractions continues et aux unités d’une famille de corps cubiques, Thèse, Univ. Caen, 1992.
  • F. Halter-Koch, Einige periodische Kettenbruchentwicklungen und Grundeinheiten quadratischer Ordnungen, Abh. Math. Sem. Univ. Hamburg 59 (1989), 157–169 (German). MR 1049893, DOI 10.1007/BF02942326
  • J. Kühner, On a family of generalized continued fraction expansions with period length going to infinity, J. Number Theory (to appear).
  • C. Levesque and G. Rhin, Two families of periodic Jacobi algorithms with period lengths going to infinity, J. Number Theory 37 (1991), no. 2, 173–180. MR 1092604, DOI 10.1016/S0022-314X(05)80035-6
  • Stéphane Louboutin, Minorations d’unités fondamentales—applications, Nagoya Math. J. 130 (1993), 1–18 (French). MR 1223726, DOI 10.1017/S0027763000004396
  • Oskar Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), no. 1, 1–76 (German). MR 1511422, DOI 10.1007/BF01449880
  • Hans-Joachim Stender, Eine Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechsten Grades, J. Number Theory 7 (1975), 235–250 (German). MR 369317, DOI 10.1016/0022-314X(75)90019-0
  • G. F. Voronoi, On a generalization of the algorithm of continued fractions, Doctoral Dissertation, Warsaw, 1896 (in Russian).
  • H. C. Williams, The period length of Voronoĭ’s algorithm for certain cubic orders, Publ. Math. Debrecen 37 (1990), no. 3-4, 245–265. MR 1082304
Similar Articles
Additional Information
  • © Copyright 1995 American Mathematical Society
  • Journal: Math. Comp. 64 (1995), 1687-1704
  • MSC: Primary 11R16; Secondary 11R27, 11Y40
  • DOI: https://doi.org/10.1090/S0025-5718-1995-1308446-0
  • MathSciNet review: 1308446