Hermite interpolation by Pythagorean hodograph quintics
HTML articles powered by AMS MathViewer
- by R. T. Farouki and C. A. Neff PDF
- Math. Comp. 64 (1995), 1589-1609 Request permission
Abstract:
The Pythagorean hodograph (PH) curves are polynomial parametric curves $\{ x(t),y(t)\}$ whose hodograph (derivative) components satisfy the Pythagorean condition $x’{}^2(t) + y’{}^2(t) \equiv {\sigma ^2}(t)$ for some polynomial $\sigma (t)$. Thus, unlike polynomial curves in general, PH curves have arc lengths and offset curves that admit exact rational representations. The lowest-order PH curves that are sufficiently flexible for general interpolation/approximation problems are the quintics. While the PH quintics are capable of matching arbitrary first-order Hermite data, the solution procedure is not straightforward and furthermore does not yield a unique result—there are always four distinct interpolants (of which only one, in general, has acceptable "shape" characteristics). We show that formulating PH quintics as complex-valued functions of a real parameter leads to a compact Hermite interpolation algorithm and facilitates an identification of the "good" interpolant (in terms of minimizing the absolute rotation number). This algorithm establishes the PH quintics as a viable medium for the design or approximation of free-form curves, and allows a one-for-one substitution of PH quintics in lieu of the widely-used "ordinary" cubics.References
-
P. BĂ©zier, The mathematical basis of the UNISURF CAD system, Butterworths, London, 1986.
- Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR 507062
- Manfredo P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese. MR 0394451
- Gerald Farin, Curves and surfaces for computer aided geometric design, 3rd ed., Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1993. A practical guide; With 1 IBM-PC floppy disk (5.25 inch; DD). MR 1201325
- Rida T. Farouki, Pythagorean-hodograph curves in practical use, Geometry processing for design and manufacturing, SIAM, Philadelphia, PA, 1992, pp. 3–33. MR 1146749
- Rida T. Farouki, The conformal map $z\to z^2$ of the hodograph plane, Comput. Aided Geom. Design 11 (1994), no. 4, 363–390. MR 1287495, DOI 10.1016/0167-8396(94)90204-6
- R. T. Farouki and C. A. Neff, Analytic properties of plane offset curves, Comput. Aided Geom. Design 7 (1990), no. 1-4, 83–99. Curves and surfaces in CAGD ’89 (Oberwolfach, 1989). MR 1074601, DOI 10.1016/0167-8396(90)90023-K
- R. T. Farouki and V. T. Rajan, On the numerical condition of polynomials in Bernstein form, Comput. Aided Geom. Design 4 (1987), no. 3, 191–216. MR 917780, DOI 10.1016/0167-8396(87)90012-4
- R. T. Farouki and V. T. Rajan, Algorithms for polynomials in Bernstein form, Comput. Aided Geom. Design 5 (1988), no. 1, 1–26. MR 945302, DOI 10.1016/0167-8396(88)90016-7
- R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990), no. 5, 736–752. MR 1084084, DOI 10.1147/rd.345.0736 F. R. Gantmacher, The theory of matrices, Vol. 2, Chelsea, New York, 1959, pp. 174-176.
- T. N. T. Goodman and K. Unsworth, Shape-preserving interpolation by parametrically defined curves, SIAM J. Numer. Anal. 25 (1988), no. 6, 1453–1465. MR 972467, DOI 10.1137/0725085
- T. N. T. Goodman and K. Unsworth, Shape preserving interpolation by curvature continuous parametric curves, Comput. Aided Geom. Design 5 (1988), no. 4, 323–340. MR 983466, DOI 10.1016/0167-8396(88)90012-X
- Peter Henrici, Applied and computational complex analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Volume 1: Power series—integration—conformal mapping—location of zeros. MR 0372162
- Erwin Kreyszig, Differential geometry, Mathematical Expositions, No. 11, University of Toronto Press, Toronto, 1959. MR 0108795
- K. K. Kubota, Pythagorean triples in unique factorization domains, Amer. Math. Monthly 79 (1972), 503–505. MR 297690, DOI 10.2307/2317570
- Richard S. Millman and George D. Parker, Elements of differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1977. MR 0442832 B. Pham, Offset curves and surfaces: a brief survey, Comput. Aided Design 24 (1992), 223-229.
- I. J. Schoenberg, On variation diminishing approximation methods, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Publication of the Mathematics Research Center, U.S. Army, the University of Wisconsin, no. 1, University of Wisconsin Press, Madison, Wis., 1959, pp. 249–274. Edited by R. E. Langer. MR 0102167
- Hassler Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276–284. MR 1556973
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp. 64 (1995), 1589-1609
- MSC: Primary 65D17; Secondary 53A04, 65Y25, 68U07
- DOI: https://doi.org/10.1090/S0025-5718-1995-1308452-6
- MathSciNet review: 1308452