Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A dual finite element approach for stresses of elasto-perfectly plastic bodies
HTML articles powered by AMS MathViewer

by P. Neittaanmäki, V. Rivkind and G. Serëgin PDF
Math. Comp. 64 (1995), 1455-1462 Request permission

Abstract:

Primal and dual approaches are introduced for the elasto-perfectly plastic problems. We prove theorems for approximating the stresses of elastic-perfectly plastic bodies.
References
  • G. Anzellotti and M. Giaquinta, On the existence of the fields of stresses and displacements for an elasto-perfectly plastic body in static equilibrium, J. Math. Pures Appl. (9) 61 (1982), no. 3, 219–244 (1983). MR 690394
  • Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
  • G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques, No. 21, Dunod, Paris, 1972 (French). MR 0464857
  • I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek, Solution of variational inequalities in mechanics, Applied Mathematical Sciences, vol. 66, Springer-Verlag, New York, 1988. Translated from the Slovak by J. Jarník. MR 952855, DOI 10.1007/978-1-4612-1048-1
  • J. Haslinger and P. Neittaanmäki, Finite element approximation for optimal shape design, John Wiley & Sons, Ltd., Chichester, 1988. Theory and applications. MR 982710
  • C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Math. 30 (1978), no. 1, 103–116. MR 483904, DOI 10.1007/BF01403910
  • Robert Kohn and Roger Temam, Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl. Math. Optim. 10 (1983), no. 1, 1–35. MR 701898, DOI 10.1007/BF01448377
  • V. Rivkind, L. Rukhovetz, and L. Oganesjan, Variational-difference schemes, J. Lit. Acad. Sci. Vilnius 1 (1971), 2 (1973). G. Seregin, On the well-posedness of variational problems of mechanics of ideally elastic-plastic media, Soviet Phys. Dokl. 5 (1984), 316-318.
  • G. A. Serëgin, On the differentiability of extremals of variational problems of the mechanics of ideally elastoplastic media, Differentsial′nye Uravneniya 23 (1987), no. 11, 1981–1991, 2022 (Russian). MR 928247
  • G. A. Serëgin, On the regularity of weak solutions of variational problems of plasticity theory, Algebra i Analiz 2 (1990), no. 2, 121–140 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 2, 321–338. MR 1062266
  • —, Variation-difference scheme for problems on the mechanics of ideally elasto-plastic media, USSR Comput. Math. and Math. Phys. 25 (1985), 153-165.
  • Roger Temam and Gilbert Strang, Functions of bounded deformation, Arch. Rational Mech. Anal. 75 (1980/81), no. 1, 7–21. MR 592100, DOI 10.1007/BF00284617
Similar Articles
Additional Information
  • © Copyright 1995 American Mathematical Society
  • Journal: Math. Comp. 64 (1995), 1455-1462
  • MSC: Primary 73V25; Secondary 65N30, 73E05, 73V05
  • DOI: https://doi.org/10.1090/S0025-5718-1995-1308458-7
  • MathSciNet review: 1308458