## Grid modification for second-order hyperbolic problems

HTML articles powered by AMS MathViewer

- by Dao Qi Yang PDF
- Math. Comp.
**64**(1995), 1495-1509 Request permission

## Abstract:

A family of Galerkin finite element methods is presented to accurately and efficiently solve the wave equation that includes sharp propagating wave fronts. The new methodology involves different finite element discretizations at different time levels; thus, at any time level, relatively coarse grids can be applied in regions where the solution changes smoothly while finer grids can be employed near wave fronts. The change of grid from time step to time step need not be continuous, and the number of grid points at different time levels can be arbitrarily different. The formulation is applicable to general second-order hyperbolic equations. Stability results are proved and a priori error estimates are established for several boundary conditions. Our error estimates consist of three parts: the time finite difference discretization error, the spatial finite element discretization error, and the error due to the projections of the approximated solution from old grids onto new grids.## References

- Ivo Babuška and Manil Suri,
*The $p$- and $h$-$p$ versions of the finite element method, an overview*, Comput. Methods Appl. Mech. Engrg.**80**(1990), no. 1-3, 5–26. Spectral and high order methods for partial differential equations (Como, 1989). MR**1067939**, DOI 10.1016/0045-7825(90)90011-A - M. J. Baines,
*An analysis of the moving finite-element procedure*, SIAM J. Numer. Anal.**28**(1991), no. 5, 1323–1349. MR**1119273**, DOI 10.1137/0728070 - Garth A. Baker,
*Error estimates for finite element methods for second order hyperbolic equations*, SIAM J. Numer. Anal.**13**(1976), no. 4, 564–576. MR**423836**, DOI 10.1137/0713048 - Randolph E. Bank and Rafael F. Santos,
*Analysis of some moving space-time finite element methods*, SIAM J. Numer. Anal.**30**(1993), no. 1, 1–18. MR**1202654**, DOI 10.1137/0730001 - J. H. Bramble and J. E. Osborn,
*Rate of convergence estimates for nonselfadjoint eigenvalue approximations*, Math. Comp.**27**(1973), 525–549. MR**366029**, DOI 10.1090/S0025-5718-1973-0366029-9 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174**
R. Clayton and B. Engquist, - Lawrence C. Cowsar, Todd F. Dupont, and Mary F. Wheeler,
*A priori estimates for mixed finite element methods for the wave equation*, Comput. Methods Appl. Mech. Engrg.**82**(1990), no. 1-3, 205–222. Reliability in computational mechanics (Austin, TX, 1989). MR**1077657**, DOI 10.1016/0045-7825(90)90165-I - Jim Douglas Jr. and Todd Dupont,
*Galerkin methods for parabolic equations with nonlinear boundary conditions*, Numer. Math.**20**(1972/73), 213–237. MR**319379**, DOI 10.1007/BF01436565 - Todd Dupont,
*$L^{2}$-estimates for Galerkin methods for second order hyperbolic equations*, SIAM J. Numer. Anal.**10**(1973), 880–889. MR**349045**, DOI 10.1137/0710073 - Todd Dupont,
*Mesh modification for evolution equations*, Math. Comp.**39**(1982), no. 159, 85–107. MR**658215**, DOI 10.1090/S0025-5718-1982-0658215-0 - Bjorn Engquist and Andrew Majda,
*Absorbing boundary conditions for the numerical simulation of waves*, Math. Comp.**31**(1977), no. 139, 629–651. MR**436612**, DOI 10.1090/S0025-5718-1977-0436612-4 - Thomas J. R. Hughes,
*The finite element method*, Prentice Hall, Inc., Englewood Cliffs, NJ, 1987. Linear static and dynamic finite element analysis; With the collaboration of Robert M. Ferencz and Arthur M. Raefsky. MR**1008473** - Gregory M. Hulbert and Thomas J. R. Hughes,
*Space-time finite element methods for second-order hyperbolic equations*, Comput. Methods Appl. Mech. Engrg.**84**(1990), no. 3, 327–348. MR**1082826**, DOI 10.1016/0045-7825(90)90082-W - Claes Johnson,
*Numerical solution of partial differential equations by the finite element method*, Cambridge University Press, Cambridge, 1987. MR**925005** - Claes Johnson,
*Discontinuous Galerkin finite element methods for second order hyperbolic problems*, Comput. Methods Appl. Mech. Engrg.**107**(1993), no. 1-2, 117–129. MR**1241479**, DOI 10.1016/0045-7825(93)90170-3 - Keith Miller and Robert N. Miller,
*Moving finite elements. I*, SIAM J. Numer. Anal.**18**(1981), no. 6, 1019–1032. MR**638996**, DOI 10.1137/0718070 - Keith Miller and Robert N. Miller,
*Moving finite elements. I*, SIAM J. Numer. Anal.**18**(1981), no. 6, 1019–1032. MR**638996**, DOI 10.1137/0718070 - J. Nitsche,
*Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme*, Arch. Rational Mech. Anal.**36**(1970), 348–355 (German). MR**255043**, DOI 10.1007/BF00282271 - Alfred H. Schatz,
*An observation concerning Ritz-Galerkin methods with indefinite bilinear forms*, Math. Comp.**28**(1974), 959–962. MR**373326**, DOI 10.1090/S0025-5718-1974-0373326-0
D.W. Sheen, - Mary Fanett Wheeler,
*A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations*, SIAM J. Numer. Anal.**10**(1973), 723–759. MR**351124**, DOI 10.1137/0710062 - Dao Qi Yang,
*Mixed finite-element methods with moving grids for parabolic problems*, Math. Numer. Sinica**10**(1988), no. 3, 266–271 (Chinese, with English summary). MR**985478** - Dao Qi Yang,
*Grid modification for the wave equation with attenuation*, Numer. Math.**67**(1994), no. 3, 391–401. MR**1269503**, DOI 10.1007/s002110050034
—,

*Absorbing boundary condition for acoustic and elastic wave equations*, Bull. Seismol. Soc. Amer.

**67**(1977), 1529-1540.

*Absorbing boundary conditions for wave transmissions*, Technical Report #159, Center for Applied Mathematics, Purdue University, West Lafayette, IN 47907, July 1991.

*Domain decomposition and grid modification for parabolic problems*, (to appear).

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp.
**64**(1995), 1495-1509 - MSC: Primary 65M60
- DOI: https://doi.org/10.1090/S0025-5718-1995-1308463-0
- MathSciNet review: 1308463