On Yokoi’s conjecture
Author:
Ming Yao Zhang
Journal:
Math. Comp. 64 (1995), 1675-1685
MSC:
Primary 11R11; Secondary 11M26, 11R29
DOI:
https://doi.org/10.1090/S0025-5718-1995-1308464-2
MathSciNet review:
1308464
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we obtain a lower bound for those discriminants of real quadratic fields $\mathbb {Q}(\sqrt D )$ with $D = {m^2} + 4$ and $h(D) = 1$.
- Erich Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1970 (German). Mit einer Vorbemerkung von B. Schoenberg, einer Anmerkung von Carl Ludwig Siegel, und einer Todesanzeige von Jakob Nielsen; Zweite durchgesehene Auflage. MR 0371577
- Hyun Kwang Kim, Ming Guang Leu, and Takashi Ono, On two conjectures on real quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), no. 6, 222–224. MR 907000
- Stéphane Louboutin, Prime producing quadratic polynomials and class-numbers of real quadratic fields, Canad. J. Math. 42 (1990), no. 2, 315–341. MR 1051732, DOI https://doi.org/10.4153/CJM-1990-018-3
- R. A. Mollin and H. C. Williams, A conjecture of S. Chowla via the generalized Riemann hypothesis, Proc. Amer. Math. Soc. 102 (1988), no. 4, 794–796. MR 934844, DOI https://doi.org/10.1090/S0002-9939-1988-0934844-9
- R. A. Mollin and H. C. Williams, Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception), Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 417–425. MR 1106676
- R. A. Mollin and H. C. Williams, On a determination of real quadratic fields of class number one and related continued fraction period length less than $25$, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 1, 20–25. MR 1103974
- Hans Rademacher, Topics in analytic number theory, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman; Die Grundlehren der mathematischen Wissenschaften, Band 169. MR 0364103
- Hans Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 897531
- Harold Stark, On complex quadratic fields with class number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112–119. MR 195845, DOI https://doi.org/10.1090/S0002-9947-1966-0195845-4
- Tikao Tatuzawa, On a theorem of Siegel, Jpn. J. Math. 21 (1951), 163–178 (1952). MR 51262, DOI https://doi.org/10.4099/jjm1924.21.0_163
- Hideo Yokoi, Class-number one problem for certain kind of real quadratic fields, Proceedings of the international conference on class numbers and fundamental units of algebraic number fields (Katata, 1986) Nagoya Univ., Nagoya, 1986, pp. 125–137. MR 891892
Retrieve articles in Mathematics of Computation with MSC: 11R11, 11M26, 11R29
Retrieve articles in all journals with MSC: 11R11, 11M26, 11R29
Additional Information
Keywords:
Quadratic field,
class number,
zeta-function
Article copyright:
© Copyright 1995
American Mathematical Society