Fast Gaussian elimination with partial pivoting for matrices with displacement structure
HTML articles powered by AMS MathViewer
- by I. Gohberg, T. Kailath and V. Olshevsky PDF
- Math. Comp. 64 (1995), 1557-1576 Request permission
Abstract:
Fast $O({n^2})$ implementation of Gaussian elimination with partial pivoting is designed for matrices possessing Cauchy-like displacement structure. We show how Toeplitz-like, Toeplitz-plus-Hankel-like and Vandermonde-like matrices can be transformed into Cauchy-like matrices by using Discrete Fourier, Cosine or Sine Transform matrices. In particular this allows us to propose a new fast $O({n^2})$ Toeplitz solver GKO, which incorporates partial pivoting. A large set of numerical examples showed that GKO demonstrated stable numerical behavior and can be recommended for solving linear systems, especially with nonsymmetric, indefinite and ill-conditioned positive definite Toeplitz matrices. It is also useful for block Toeplitz and mosaic Toeplitz (Toeplitz-block) matrices. The algorithms proposed in this paper suggest an attractive alternative to look-ahead approaches, where one has to jump over ill-conditioned leading submatrices, which in the worst case requires $O({n^3})$ operations.References
- Gregory Ammar and Paul Gader, New decompositions of the inverse of a Toeplitz matrix, Signal processing, scattering and operator theory, and numerical methods (Amsterdam, 1989) Progr. Systems Control Theory, vol. 5, Birkhäuser Boston, Boston, MA, 1990, pp. 421–428. MR 1115471
- Joseph A. Ball, Israel Gohberg, and Leiba Rodman, Interpolation of rational matrix functions, Operator Theory: Advances and Applications, vol. 45, Birkhäuser Verlag, Basel, 1990. MR 1083145, DOI 10.1007/978-3-0348-7709-1 A. W. Bojanczyk, private communication.
- A. W. Bojańczyk, R. P. Brent, F. R. de Hoog, and D. R. Sweet, On the stability of the Bareiss and related Toeplitz factorization algorithms, SIAM J. Matrix Anal. Appl. 16 (1995), no. 1, 40–57. MR 1311417, DOI 10.1137/S0895479891221563
- Enrico Bozzo and Carmine Di Fiore, On the use of certain matrix algebras associated with discrete trigonometric transforms in matrix displacement decomposition, SIAM J. Matrix Anal. Appl. 16 (1995), no. 1, 312–326. MR 1311435, DOI 10.1137/S0895479893245103
- J. Chun and T. Kailath, Displacement structure for Hankel, Vandermonde, and related (derived) matrices, Linear Algebra Appl. 151 (1991), 199–227. MR 1102150, DOI 10.1016/0024-3795(91)90364-3
- T. Kailath and J. Chun, Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices, SIAM J. Matrix Anal. Appl. 15 (1994), no. 1, 114–128. MR 1257621, DOI 10.1137/S0895479889169042
- George Cybenko, The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems of equations, SIAM J. Sci. Statist. Comput. 1 (1980), no. 3, 303–319. MR 596026, DOI 10.1137/0901021
- I. Gohberg and I. Koltracht, Efficient algorithm for Toeplitz plus Hankel matrices, Integral Equations Operator Theory 12 (1989), no. 1, 136–142. MR 973051, DOI 10.1007/BF01199761 I. Gohberg, I. Koltracht, and D. Xiao, On the solution of Yule-Walker equations, Proc. SPIE Conference of Advanced Algorithms and Architectures for Signal Processing IV, vol. 1566, July 1991, pp. 14-22.
- I. Gohberg, I. Koltracht, and D. Xiao, Condition and accuracy of algorithms for computing Schur coefficients of Toeplitz matrices, SIAM J. Matrix Anal. Appl. 15 (1994), no. 4, 1290–1309. MR 1293918, DOI 10.1137/0615087
- I. Gohberg and V. Olshevsky, Circulants, displacements and decompositions of matrices, Integral Equations Operator Theory 15 (1992), no. 5, 730–743. MR 1177319, DOI 10.1007/BF01200697
- I. Gohberg and V. Olshevsky, Complexity of multiplication with vectors for structured matrices, Linear Algebra Appl. 202 (1994), 163–192. MR 1288487, DOI 10.1016/0024-3795(94)90189-9 —Fast algorithm for matrix Nehari problem, Proc. MTNS-93, Systems and Networks: Mathematical Theory and Applications, vol. 2, Invited and Contributed Papers (U. Helmke, R. Mennicken and J. Sauers, eds.), Akademie Verlag, 1994, pp. 687-690.
- I. Gohberg and V. Olshevsky, Fast state space algorithms for matrix Nehari and Nehari-Takagi interpolation problems, Integral Equations Operator Theory 20 (1994), no. 1, 44–83. MR 1290458, DOI 10.1007/BF01194749
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570
- Georg Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices, Linear algebra for signal processing (Minneapolis, MN, 1992) IMA Vol. Math. Appl., vol. 69, Springer, New York, 1995, pp. 63–81. MR 1351733, DOI 10.1007/978-1-4612-4228-4_{5}
- G. Heinig, P. Jankowski, and K. Rost, Fast inversion algorithms of Toeplitz-plus-Hankel matrices, Numer. Math. 52 (1988), no. 6, 665–682. MR 946382, DOI 10.1007/BF01395817
- Georg Heinig and Karla Rost, Algebraic methods for Toeplitz-like matrices and operators, Mathematical Research, vol. 19, Akademie-Verlag, Berlin, 1984. MR 756628, DOI 10.1007/978-3-0348-6241-7
- Thomas Kailath, Signal processing applications of some moment problems, Moments in mathematics (San Antonio, Tex., 1987) Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987, pp. 71–109. MR 921085, DOI 10.1090/psapm/037/921085
- Thomas Kailath, Sun Yuan Kung, and Martin Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl. 68 (1979), no. 2, 395–407. MR 533501, DOI 10.1016/0022-247X(79)90124-0
- T. Kailath and V. Olshevsky, Displacement structure approach to Chebyshev-Vandermonde and related matrices, Integral Equations Operator Theory 22 (1995), no. 1, 65–92. MR 1327594, DOI 10.1007/BF01195490 —, Displacement structure approach to polynomial Vandermonde and related matrices, preprint, 1994.
- T. Kailath and A. H. Sayed, Fast algorithms for generalized displacement structures, Recent advances in mathematical theory of systems, control, networks and signal processing, II (Kobe, 1991) Mita, Tokyo, 1992, pp. 27–32. MR 1197996
- Thomas Kailath and Ali H. Sayed, Displacement structure: theory and applications, SIAM Rev. 37 (1995), no. 3, 297–386. MR 1355506, DOI 10.1137/1037082
- Hanoch Lev-Ari and Thomas Kailath, Triangular factorization of structured Hermitian matrices, I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel, 1986, pp. 301–324. MR 902610, DOI 10.1007/978-3-0348-5483-2_{1}2
- Victor Pan, On computations with dense structured matrices, Math. Comp. 55 (1990), no. 191, 179–190. MR 1023051, DOI 10.1090/S0025-5718-1990-1023051-7
- J. Pasupathy and R. A. Damodar, The Gaussian Toeplitz matrix, Linear Algebra Appl. 171 (1992), 133–147. MR 1165450, DOI 10.1016/0024-3795(92)90255-9
- Ali H. Sayed, Hanoch Lev-Ari, and Thomas Kailath, Fast triangular factorization of the sum of quasi-Toeplitz and quasi-Hankel matrices, Linear Algebra Appl. 191 (1993), 77–106. MR 1233467, DOI 10.1016/0024-3795(93)90510-U I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205-232; English transl., Operator Theory: Advances and Applications (I. Gohberg, ed.), vol. 18, Birkhäuser, Boston, 1986, pp. 31-88.
- J. M. Varah, The prolate matrix, Linear Algebra Appl. 187 (1993), 269–278. MR 1221711, DOI 10.1016/0024-3795(93)90142-B
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp. 64 (1995), 1557-1576
- MSC: Primary 15A06; Secondary 15A09, 15A23, 15A57, 65F05
- DOI: https://doi.org/10.1090/S0025-5718-1995-1312096-X
- MathSciNet review: 1312096