Interior penalty preconditioners for mixed finite element approximations of elliptic problems
HTML articles powered by AMS MathViewer
- by Torgeir Rusten, Panayot S. Vassilevski and Ragnar Winther PDF
- Math. Comp. 65 (1996), 447-466 Request permission
Abstract:
It is established that an interior penalty method applied to second-order elliptic problems gives rise to a local operator which is spectrally equivalent to the corresponding nonlocal operator arising from the mixed finite element method. This relation can be utilized in order to construct preconditioners for the discrete mixed system. As an example, a family of additive Schwarz preconditioners for these systems is constructed. Numerical examples which confirm the theoretical results are also presented.References
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- O. Axelsson, Numerical algorithms for indefinite problems, Elliptic Problem Solvers II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, Orlando, 1984, pp. 219–232.
- O. Axelsson and P. S. Vassilevski, A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning, SIAM J. Matrix Anal. Appl. 12 (1991), no. 4, 625–644. MR 1121697, DOI 10.1137/0612048
- —, Construction of variable–step preconditioners for inner–outer iterative methods, Iterative Methods in Linear Algebra (R. Beauwens and P. de Groen, eds.), North-Holland, Amsterdam, 1992, pp. 1–14.
- Randolph E. Bank, Bruno D. Welfert, and Harry Yserentant, A class of iterative methods for solving saddle point problems, Numer. Math. 56 (1990), no. 7, 645–666. MR 1031439, DOI 10.1007/BF01405194
- Petter E. Bjørstad and Olof B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (1986), no. 6, 1097–1120. MR 865945, DOI 10.1137/0723075
- James H. Bramble and Joseph E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp. 50 (1988), no. 181, 1–17. MR 917816, DOI 10.1090/S0025-5718-1988-0917816-8
- —, Iterative techniques for time dependent Stokes problem. Preprint 1994.
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125, DOI 10.1090/S0025-5718-1986-0842125-3
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp. 46 (1986), no. 174, 361–369. MR 829613, DOI 10.1090/S0025-5718-1986-0829613-0
- J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems. Preprint 1994.
- James H. Bramble, Joseph E. Pasciak, and Jinchao Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms, Math. Comp. 56 (1991), no. 193, 1–34. MR 1052086, DOI 10.1090/S0025-5718-1991-1052086-4
- Franco Brezzi, Jim Douglas Jr., Michel Fortin, and L. Donatella Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 581–604 (English, with French summary). MR 921828, DOI 10.1051/m2an/1987210405811
- Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235. MR 799685, DOI 10.1007/BF01389710
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- L. C. Cowsar, Dual variable Schwarz methods for mixed finite elements, Report TR93-09, Rice University, Houston, 1993.
- Lawrence C. Cowsar, Jan Mandel, and Mary F. Wheeler, Balancing domain decomposition for mixed finite elements, Math. Comp. 64 (1995), no. 211, 989–1015. MR 1297465, DOI 10.1090/S0025-5718-1995-1297465-9
- J. Douglas, Jr. and J. Wang, A new family of mixed finite element spaces over rectangles, Comp. Appl. Math. 12 (1993), pp. 183–197.
- M. Dryja and O. B. Widlund, An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report 339, Courant Institute of Mathematical Sciences, 1987.
- M. Dryja, B. Smith, and O. B. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, Technical Report 638, Courant Institute of Mathematical Sciences, 1993.
- Howard C. Elman and Gene H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal. 31 (1994), no. 6, 1645–1661. MR 1302679, DOI 10.1137/0731085
- R. E. Ewing and M. F. Wheeler, Computational aspects of mixed finite element methods, Numerical Methods for Scientific Computing (R. S. Stepleman, ed.), North-Holland Publishing Co., Amsterdam, 1983, pp. 163–172.
- R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), no. 3, 249–277 (English, with French summary). MR 592753, DOI 10.1051/m2an/1980140302491
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Roland Glowinski and Mary Fanett Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 144–172. MR 972516
- P.-L. Lions, On the Schwarz alternating method. I, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 1–42. MR 972510
- A.M. Matsokin and S. Nepomnyaschikh, On the Schwarz alternating method, Preprint, Computing Center, Siberian Branch of the USSR Academy of Sciences, Novosibirsk, 1984.
- C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975), no. 4, 617–629. MR 383715, DOI 10.1137/0712047
- Werner Queck, The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type, SIAM J. Numer. Anal. 26 (1989), no. 4, 1016–1030. MR 1005523, DOI 10.1137/0726057
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555
- Torgeir Rusten and Ragnar Winther, A preconditioned iterative method for saddlepoint problems, SIAM J. Matrix Anal. Appl. 13 (1992), no. 3, 887–904. Iterative methods in numerical linear algebra (Copper Mountain, CO, 1990). MR 1168084, DOI 10.1137/0613054
- Torgeir Rusten and Ragnar Winther, Substructure preconditioners for elliptic saddle point problems, Math. Comp. 60 (1993), no. 201, 23–48. MR 1149293, DOI 10.1090/S0025-5718-1993-1149293-0
- David Silvester and Andrew Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners, SIAM J. Numer. Anal. 31 (1994), no. 5, 1352–1367. MR 1293519, DOI 10.1137/0731070
- P. S. Vassilevski and R. D. Lazarov, Preconditioning saddle-point problems arising from mixed finite element discretization of elliptic problems, Report CAM 92–46, Department of Mathematics, UCLA, 1992.
- P. S. Vassilevski and J. Wang, An application of the abstract multilevel theory to nonconforming finite element methods, SIAM J. Numer. Anal. 32 (1995), 235–248.
- —, Multilevel methods for cell–centered finite difference approximations of elliptic problems, Preprint, 1992.
- R. Verfürth, A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem, IMA J. Numer. Anal. 4 (1984), no. 4, 441–455. MR 768638, DOI 10.1093/imanum/4.4.441
- Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581–613. MR 1193013, DOI 10.1137/1034116
Additional Information
- Torgeir Rusten
- Affiliation: SINTEF, P. O. Box 124 Blindern, N-0314 Oslo, Norway
- Email: Torgeir.Rusten@si.sintef.no
- Panayot S. Vassilevski
- Affiliation: Center of Informatics and Computer Technology, Bulgarian Academy of Sciences, “Acad. G. Bontchev” street, Block 25 A, 1113 Sofia, Bulgaria
- Email: panayot@iscbg.acad.bg
- Ragnar Winther
- Affiliation: Department of Informatics, University of Oslo, P. O. Box 1080 Blindern, N-0316 Oslo, Norway
- MR Author ID: 183665
- Email: Ragnar.Winther@ifi.uio.no
- Received by editor(s): August 3, 1994
- Received by editor(s) in revised form: November 29, 1994
- Additional Notes: The work of all authors was partially supported by the Research Council of Norway (NFR), program no. 100998/420 and STP.29643. The work of the second author was also partially supported by the Bulgarian Ministry for Education, Science and Technology under grant MM-94$\backslash$#415.
- © Copyright 1996 American Mathematical Society
- Journal: Math. Comp. 65 (1996), 447-466
- MSC (1991): Primary 65F10, 65N20, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-96-00720-X
- MathSciNet review: 1333325