Constructing nonresidues in finite fields and the extended Riemann hypothesis
HTML articles powered by AMS MathViewer
- by Johannes Buchmann and Victor Shoup PDF
- Math. Comp. 65 (1996), 1311-1326 Request permission
Abstract:
We present a new deterministic algorithm for the problem of constructing $k$th power nonresidues in finite fields $\mathbf {F}_{p^n}$, where $p$ is prime and $k$ is a prime divisor of $p^n-1$. We prove under the assumption of the Extended Riemann Hypothesis (ERH), that for fixed $n$ and $p \rightarrow \infty$, our algorithm runs in polynomial time. Unlike other deterministic algorithms for this problem, this polynomial-time bound holds even if $k$ is exponentially large. More generally, assuming the ERH, in time $(n \log p)^{O(n)}$ we can construct a set of elements that generates the multiplicative group $\mathbf {F}_{p^n}^*$. An extended abstract of this paper appeared in Proc. 23rd Ann. ACM Symp. on Theory of Computing, 1991.References
- L. M. Adleman and H. W. Lenstra Jr., Finding irreducible polynomials over finite fields, In 18th Annual ACM Symposium on Theory of Computing, pages 350–355, 1986.
- L. M. Adleman, K. Manders, and G. L. Miller, On taking roots in finite fields, In 18th Annual Symposium on Foundations of Computer Science, pages 175–178, 1977.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355–380. MR 1023756, DOI 10.1090/S0025-5718-1990-1023756-8
- Eric Bach and Jeffrey Shallit, Factoring with cyclotomic polynomials, Math. Comp. 52 (1989), no. 185, 201–219. MR 947467, DOI 10.1090/S0025-5718-1989-0947467-1
- E. Bach and J. von zur Gathen, Deterministic factorization of polynomials over special finite fields, Technical Report 799, Computer Sciences Department, University of Wisconsin–Madison, 1988.
- E. Bach, J. von zur Gathen, and H. W. Lenstra, Preprint, 1989.
- Johannes Buchmann, On the computation of units and class numbers by a generalization of Lagrange’s algorithm, J. Number Theory 26 (1987), no. 1, 8–30. MR 883530, DOI 10.1016/0022-314X(87)90092-8
- Johannes Buchmann, On the period length of the generalized Lagrange algorithm, J. Number Theory 26 (1987), no. 1, 31–37. MR 883531, DOI 10.1016/0022-314X(87)90093-X
- Johannes Buchmann and H. C. Williams, On principal ideal testing in algebraic number fields, J. Symbolic Comput. 4 (1987), no. 1, 11–19. MR 908408, DOI 10.1016/S0747-7171(87)80049-4
- S. A. Evdokimov, Factorization of a solvable polynomial over finite fields and the generalized Riemann hypothesis, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 176 (1989), no. Teor. Slozhn. Vychisl. 4, 104–117, 153 (Russian, with English summary); English transl., J. Soviet Math. 59 (1992), no. 3, 842–849. MR 1023599, DOI 10.1007/BF01104107
- Joachim von zur Gathen, Factoring polynomials and primitive elements for special primes, Theoret. Comput. Sci. 52 (1987), no. 1-2, 77–89. MR 918114, DOI 10.1016/0304-3975(87)90081-8
- M. A. Huang, Riemann hypothesis and finding roots over finite fields, In 17th Annual ACM Symposium on Theory of Computing, pages 121–130, 1985.
- Gerald J. Janusz, Algebraic number fields, Pure and Applied Mathematics, Vol. 55, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0366864
- H. W. Lenstra Jr., Finding isomorphisms between finite fields, Math. Comp. 56 (1991), no. 193, 329–347. MR 1052099, DOI 10.1090/S0025-5718-1991-1052099-2
- H. W. Lenstra Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 211–244. MR 1129315, DOI 10.1090/S0273-0979-1992-00284-7
- G. I. Perel′muter and I. E. Shparlinskiĭ, Distribution of primitive roots in finite fields, Uspekhi Mat. Nauk 45 (1990), no. 1(271), 185–186 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 1, 223–224. MR 1050940, DOI 10.1070/RM1990v045n01ABEH002330
- Stephen C. Pohlig and Martin E. Hellman, An improved algorithm for computing logarithms over $\textrm {GF}(p)$ and its cryptographic significance, IEEE Trans. Inform. Theory IT-24 (1978), no. 1, 106–110. MR 484737, DOI 10.1109/tit.1978.1055817
- Lajos Rónyai, Factoring polynomials over finite fields, J. Algorithms 9 (1988), no. 3, 391–400. MR 955147, DOI 10.1016/0196-6774(88)90029-6
- L. Rónyai, Galois groups and factoring polynomials over finite fields, In 30th Annual Symposium on Foundations of Computer Science, pages 99–104, 1989.
- A. Schönhage, The fundamantal theorem of algebra in terms of computational complexity, Unpublished manuscript, 1982.
- V. Shoup, Removing randomness from computational number theory (Ph. D. thesis), Technical Report 865, Computer Sciences Department, University of Wisconsin–Madison, 1989.
- Victor Shoup, New algorithms for finding irreducible polynomials over finite fields, Math. Comp. 54 (1990), no. 189, 435–447. MR 993933, DOI 10.1090/S0025-5718-1990-0993933-0
- Victor Shoup, Smoothness and factoring polynomials over finite fields, Inform. Process. Lett. 38 (1991), no. 1, 39–42. MR 1103697, DOI 10.1016/0020-0190(91)90212-Z
- Victor Shoup, Searching for primitive roots in finite fields, Math. Comp. 58 (1992), no. 197, 369–380. MR 1106981, DOI 10.1090/S0025-5718-1992-1106981-9
- Yuan Wang, On the least primitive root of a prime, Sci. Sinica 10 (1961), 1–14. MR 130848
Additional Information
- Johannes Buchmann
- Affiliation: Universität des Saarlandes, Fb 14 – Informatik, PF 151150, 66041 Saarbrücken, Germany
- Victor Shoup
- Affiliation: Bellcore, 445 South St., Morristown, New Jersey 07960
- Received by editor(s): March 19, 1993
- Received by editor(s) in revised form: February 12, 1995
- Additional Notes: This research was done while the second author was a postdoctoral fellow at the University of Toronto.
- © Copyright 1996 American Mathematical Society
- Journal: Math. Comp. 65 (1996), 1311-1326
- MSC (1991): Primary 11Y16
- DOI: https://doi.org/10.1090/S0025-5718-96-00751-X
- MathSciNet review: 1348040