Hermite and Smith normal form algorithms over Dedekind domains
Author:
Henri Cohen
Journal:
Math. Comp. 65 (1996), 1681-1699
MSC (1991):
Primary 11Y40
DOI:
https://doi.org/10.1090/S0025-5718-96-00766-1
MathSciNet review:
1361805
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show how the usual algorithms valid over Euclidean domains, such as the Hermite Normal Form, the modular Hermite Normal Form and the Smith Normal Form can be extended to Dedekind rings. In a sequel to this paper, we will explain the use of these algorithms for computing in relative extensions of number fields.
- W. Bosma and M. Pohst, Computations with finitely generated modules over Dedekind rings, Proceedings ISSAC’91 (1991), 151–156.
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
- H. Cohen, F. Diaz y Diaz and M. Olivier, Algorithmic computations in relative extensions of number fields, in preparation.
- P. D. Domich, R. Kannan, and L. E. Trotter Jr., Hermite normal form computation using modulo determinant arithmetic, Math. Oper. Res. 12 (1987), no. 1, 50–59. MR 882842, DOI https://doi.org/10.1287/moor.12.1.50
- James L. Hafner and Kevin S. McCurley, Asymptotically fast triangularization of matrices over rings, SIAM J. Comput. 20 (1991), no. 6, 1068–1083. MR 1135749, DOI https://doi.org/10.1137/0220067
- G. Havas and B. Majewski, Hermite normal form computation for integer matrices, Congr. Numer. 105 (1994), 184–193.
- Ravindran Kannan and Achim Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), no. 4, 499–507. MR 573842, DOI https://doi.org/10.1137/0208040
- P. Montgomery, in preparation.
Retrieve articles in Mathematics of Computation with MSC (1991): 11Y40
Retrieve articles in all journals with MSC (1991): 11Y40
Additional Information
Henri Cohen
Affiliation:
Laboratoire A2X, UMR 9936 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
Email:
cohen@math.u-bordeaux.fr
Keywords:
Dedekind domain,
Hermite normal form,
Smith normal form,
relative extensions of number fields
Received by editor(s):
January 11, 1995
Received by editor(s) in revised form:
July 19, 1995
Article copyright:
© Copyright 1996
American Mathematical Society