A stochastic particle method for the McKean-Vlasov and the Burgers equation
HTML articles powered by AMS MathViewer
- by Mireille Bossy and Denis Talay PDF
- Math. Comp. 66 (1997), 157-192 Request permission
Abstract:
In this paper we introduce and analyze a stochastic particle method for the McKean-Vlasov and the Burgers equation; the construction and error analysis are based upon the theory of the propagation of chaos for interacting particle systems. Our objective is three-fold. First, we consider a McKean-Vlasov equation in $[0,T]\times \mathbb {R}$ with sufficiently smooth kernels, and the PDEs giving the distribution function and the density of the measure $\mu _t$, the solution to the McKean-Vlasov equation. The simulation of the stochastic system with $N$ particles provides a discrete measure which approximates $\mu _{k\delta t}$ for each time $k\delta t$ (where $\delta t$ is a discretization step of the time interval $[0,T]$). An integration (resp. smoothing) of this discrete measure provides approximations of the distribution function (resp. density) of $\mu _{k\delta t}$. We show that the convergence rate is ${\mathcal O}\left (1/\sqrt {N}+\sqrt {\delta t}\right )$ for the approximation in $L^1(\Omega \times \mathbb {R})$ of the cumulative distribution function at time $T$, and of order ${\mathcal O}\left (\varepsilon ^2 + \frac {1}{\varepsilon } \left (\frac {1}{\sqrt {N}}+ \sqrt {\delta t}\right )\right )$ for the approximation in $L^1(\Omega \times \mathbb {R})$ of the density at time $T$ ($\Omega$ is the underlying probability space, $\varepsilon$ is a smoothing parameter). Our second objective is to show that our particle method can be modified to solve the Burgers equation with a nonmonotonic initial condition, without modifying the convergence rate ${\mathcal O}\left (1/\sqrt {N}+\sqrt {\delta t}\right )$. This part extends earlier work of ours, where we have limited ourselves to monotonic initial conditions. Finally, we present numerical experiments which confirm our theoretical estimates and illustrate the numerical efficiency of the method when the viscosity coefficient is very small.References
- Pierre Bernard, Denis Talay, and Luciano Tubaro, Rate of convergence of a stochastic particle method for the Kolmogorov equation with variable coefficients, Math. Comp. 63 (1994), no. 208, 555–587, S11–S17. MR 1250770, DOI 10.1090/S0025-5718-1994-1250770-3
- M. Bossy. Vitesse de Convergence d’Algorithmes Particulaires Stochastiques et Application à l’Equation de Burgers. PhD thesis, Université de Provence, 1995.
- M. Bossy and D. Talay. Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation. Ann. Appl. Probab., To appear.
- Piermarco Cannarsa and Vincenzo Vespri, Generation of analytic semigroups by elliptic operators with unbounded coefficients, SIAM J. Math. Anal. 18 (1987), no. 3, 857–872. MR 883572, DOI 10.1137/0518063
- Alexandre J. Chorin and Jerrold E. Marsden, A mathematical introduction to fluid mechanics, 3rd ed., Texts in Applied Mathematics, vol. 4, Springer-Verlag, New York, 1993. MR 1218879, DOI 10.1007/978-1-4612-0883-9
- A.L. Chorin. Vortex methods and Vortex Statistics – Lectures for Les Houches Summer School of Theoretical Physics. Lawrence Berkeley Laboratory Prepublications, 1993.
- R.L. Dobrushin. Prescribing a system of random variables by conditional distributions. Theory Probab. Appl., 3:469, 1970.
- Avner Friedman, Stochastic differential equations and applications. Vol. 1, Probability and Mathematical Statistics, Vol. 28, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0494490
- Jürgen Gärtner, On the McKean-Vlasov limit for interacting diffusions, Math. Nachr. 137 (1988), 197–248. MR 968996, DOI 10.1002/mana.19881370116
- Jonathan Goodman, Convergence of the random vortex method, Comm. Pure Appl. Math. 40 (1987), no. 2, 189–220. MR 872384, DOI 10.1002/cpa.3160400204
- Karl E. Gustafson and James A. Sethian (eds.), Vortex methods and vortex motion, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. MR 1095601, DOI 10.1137/1.9781611971736
- Ole H. Hald, Convergence of random methods for a reaction-diffusion equation, SIAM J. Sci. Statist. Comput. 2 (1981), no. 1, 85–94. MR 618634, DOI 10.1137/0902007
- —, Convergence of a random method with creation of vorticity. SIAM J. Sci. Statist. Comput., 7:1373–1386, 1986.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1988. MR 917065, DOI 10.1007/978-1-4684-0302-2
- S. N. Kružkov, First order quasilinear equations with several independent variables. , Mat. Sb. (N.S.) 81 (123) (1970), 228–255 (Russian). MR 0267257
- Christian Léonard, Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 237–262 (French, with English summary). MR 850759
- Ding-Gwo Long, Convergence of the random vortex method in two dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 779–804. MR 958446, DOI 10.1090/S0894-0347-1988-0958446-1
- C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys. 84 (1982), no. 4, 483–503. MR 667756
- Sylvie Méléard and Sylvie Roelly-Coppoletta, A propagation of chaos result for a system of particles with moderate interaction, Stochastic Process. Appl. 26 (1987), no. 2, 317–332. MR 923112, DOI 10.1016/0304-4149(87)90184-0
- Michel Métivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites, Séminaire de Probabilités, XX, 1984/85, Lecture Notes in Math., vol. 1204, Springer, Berlin, 1986, pp. 426–446 (French). MR 942037, DOI 10.1007/BFb0075734
- G.N. Milshtein. Approximate integration of stochastic differential equations. Theory Probab. Appl., 19:557–562, 1974.
- Karl Oelschläger, A martingale approach to the law of large numbers for weakly interacting stochastic processes, Ann. Probab. 12 (1984), no. 2, 458–479. MR 735849
- Elbridge Gerry Puckett, A study of the vortex sheet method and its rate of convergence, SIAM J. Sci. Statist. Comput. 10 (1989), no. 2, 298–327. MR 982225, DOI 10.1137/0910020
- Elbridge Gerry Puckett, Convergence of a random particle method to solutions of the Kolmogorov equation $u_t=\nu u_{xx}+u(1-u)$, Math. Comp. 52 (1989), no. 186, 615–645. MR 964006, DOI 10.1090/S0025-5718-1989-0964006-X
- P.-A. Raviart, An analysis of particle methods, Numerical methods in fluid dynamics (Como, 1983) Lecture Notes in Math., vol. 1127, Springer, Berlin, 1985, pp. 243–324. MR 802214, DOI 10.1007/BFb0074532
- Stephen Roberts, Convergence of a random walk method for the Burgers equation, Math. Comp. 52 (1989), no. 186, 647–673. MR 955753, DOI 10.1090/S0025-5718-1989-0955753-4
- Alain-Sol Sznitman, Topics in propagation of chaos, École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165–251. MR 1108185, DOI 10.1007/BFb0085169
Additional Information
- Mireille Bossy
- Affiliation: INRIA, 2004 Route des Lucioles, B.P. 93, 06902 Sophia-Antipolis Cedex, France
- Email: Mireille.Bossy@sophia.inria.fr
- Denis Talay
- Affiliation: INRIA, 2004 Route des Lucioles, B.P. 93, 06902 Sophia-Antipolis Cedex, France
- MR Author ID: 170370
- Email: Denis.Talay@sophia.inria.fr
- Received by editor(s): January 11, 1995
- Received by editor(s) in revised form: May 15, 1995, and November 6, 1995
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp. 66 (1997), 157-192
- MSC (1991): Primary 60H10, 60K35, 65C20, 65M15, 65U05
- DOI: https://doi.org/10.1090/S0025-5718-97-00776-X
- MathSciNet review: 1370849