How accurate is the streamline diffusion finite element method?
HTML articles powered by AMS MathViewer
- by Guohui Zhou PDF
- Math. Comp. 66 (1997), 31-44 Request permission
Abstract:
We investigate the optimal accuracy of the streamline diffusion finite element method applied to convection–dominated problems. For linear/bilinear elements the theoretical order of convergence given in the literature is either $O(h^{3/2})$ for quasi–uniform meshes or $O(h^2)$ for some uniform meshes. The determination of the optimal order in general was an open problem. By studying a special type of meshes, it is shown that the streamline diffusion method may actually converge with any order within this range depending on the characterization of the meshes.References
- H. Blum, Q. Lin, and R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math. 49 (1986), no. 1, 11–37. MR 847015, DOI 10.1007/BF01389427
- T. J. R. Hughes, L. P. Franca, and M. Mallet, A new finite element formulation for computational fluid dynamics. I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Engrg. 54 (1986), no. 2, 223–234. MR 831553, DOI 10.1016/0045-7825(86)90127-1
- Claes Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge University Press, Cambridge, 1987. MR 925005
- Claes Johnson and Uno Nävert, An analysis of some finite element methods for advection-diffusion problems, Analytical and numerical approaches to asymptotic problems in analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980) North-Holland Math. Stud., vol. 47, North-Holland, Amsterdam-New York, 1981, pp. 99–116. MR 605502
- C. Johnson, A. H. Schatz, and L. B. Wahlbin, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp. 49 (1987), no. 179, 25–38. MR 890252, DOI 10.1090/S0025-5718-1987-0890252-8
- Qun Lin, A rectangle test for finite element analysis, Proc. of Systems Science & Systems Engineering, Great Wall (H.K.) Culture Publish Co., Hong Kong (1991), 213–216.
- Koichi Niijima, Pointwise error estimates for a streamline diffusion finite element scheme, Numer. Math. 56 (1990), no. 7, 707–719. MR 1031443, DOI 10.1007/BF01405198
- Todd E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal. 28 (1991), no. 1, 133–140. MR 1083327, DOI 10.1137/0728006
- Gerard R. Richter, An optimal-order error estimate for the discontinuous Galerkin method, Math. Comp. 50 (1988), no. 181, 75–88. MR 917819, DOI 10.1090/S0025-5718-1988-0917819-3
- Bill Semper, Numerical crosswind smear in the streamline diffusion method, Comput. Methods Appl. Mech. Engrg. 113 (1994), no. 1-2, 99–108. MR 1266924, DOI 10.1016/0045-7825(94)90213-5
- Ai Hui Zhou and Qun Lin, Optimal and superconvergence estimates of the finite element method for a scalar hyperbolic equation, Acta Math. Sci. (English Ed.) 14 (1994), no. 1, 90–94. MR 1280088, DOI 10.1016/S0252-9602(18)30094-8
- G. Zhou, Local pointwise error estimates for the streamline diffusion method applied to nonstationary hyperbolic problems, East-West J. Numer. Math. 3 (1995), no. 3, 217–235. MR 1359411
- Guohui Zhou, R. Rannacher, Pointwise superconvergence of the streamline diffusion finite element method, Numerical Methods for Partial Differential Equations 12 (1996), 123–145.
Additional Information
- Guohui Zhou
- Email: zhou@gaia.iwr.uni-heidelberg.de
- Received by editor(s): June 1, 1995
- Additional Notes: This work was supported by the Deutsche Forschungsgemeinschaft, SFB 359, Universität Heidelberg, Germany.
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp. 66 (1997), 31-44
- MSC (1991): Primary 65N30, 65B05, 76M10
- DOI: https://doi.org/10.1090/S0025-5718-97-00788-6
- MathSciNet review: 1370859