Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An a posteriori error estimate for a first-kind integral equation
HTML articles powered by AMS MathViewer

by Carsten Carstensen PDF
Math. Comp. 66 (1997), 139-155 Request permission

Abstract:

In this paper we present a new a posteriori error estimate for the boundary element method applied to an integral equation of the first kind. The estimate is local and sharp for quasi-uniform meshes and so improves earlier work of ours. The mesh-dependence of the constants is analyzed and shown to be weaker than expected from our previous work. Besides the Galerkin boundary element method, the collocation method and the qualocation method are considered. A numerical example is given involving an adaptive feedback algorithm.
References
  • Douglas N. Arnold and Wolfgang L. Wendland, On the asymptotic convergence of collocation methods, Math. Comp. 41 (1983), no. 164, 349–381. MR 717691, DOI 10.1090/S0025-5718-1983-0717691-6
  • Mohammad Asadzadeh and Kenneth Eriksson, On adaptive finite element methods for Fredholm integral equations of the second kind, SIAM J. Numer. Anal. 31 (1994), no. 3, 831–855. MR 1275116, DOI 10.1137/0731045
  • Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
  • C. Carstensen: Adaptive boundary element methods and adaptive finite element and boundary element coupling. In Proceedings Boundary Value Problems and Integral Equations on Non-Smooth Domains, eds. M. Costabel, M. Dauge, S. Nicaise. Lecture notes in pure and applied mathematics 167, Marcel Dekker New York 1995, 47–58.
  • C. Carstensen: Efficiency of a posteriori BEM error estimates for first-kind integral equations on quasi-uniform meshes. Math. Comp. 65 (1996), 69–84.
  • C. Carstensen: A posteriori error estimate for the symmetric coupling of finite elements and boundary elements, Computing (in press), 1996.
  • Carsten Carstensen and Ernst P. Stephan, A posteriori error estimates for boundary element methods, Math. Comp. 64 (1995), no. 210, 483–500. MR 1277764, DOI 10.1090/S0025-5718-1995-1277764-7
  • C. Carstensen, E.P. Stephan: Adaptive boundary element methods for some first-kind integral equations. SIAM J. Numer. Anal. (1996), to appear.
  • C. Carstensen, E.P. Stephan: Adaptive boundary element methods for transmission problems. J. Austr. Math. Soc. Ser. B (1996), to appear.
  • G. A. Chandler, Discrete norms for the convergence of boundary element methods, Workshop on Theoretical and Numerical Aspects of Geometric Variational Problems (Canberra, 1990) Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 26, Austral. Nat. Univ., Canberra, 1991, pp. 62–78. MR 1139029
  • G. A. Chandler and I. H. Sloan, Spline qualocation methods for boundary integral equations, Numer. Math. 58 (1990), no. 5, 537–567. MR 1080305, DOI 10.1007/BF01385639
  • Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, DOI 10.1137/0519043
  • Martin Costabel and Ernst Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, Mathematical models and methods in mechanics, Banach Center Publ., vol. 15, PWN, Warsaw, 1985, pp. 175–251. MR 874845
  • B. Faermann: Lokale a-posteriori-Fehlerschätzer bei der Diskretisierung von Randintegralgleichungen. PhD-thesis, University of Kiel, FRG (1993).
  • N. Heuer: hp-Versionen der Randelementemethode. PhD-thesis, University of Hannover, FRG (1992).
  • J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177
  • T. von Petersdorff: Randwertprobleme der Elastizitätstheorie für Polyeder — Singularitäten und Approximation mit Randelementmethoden. PhD-thesis, TH Darmstadt, FRG (1989).
  • E. Rank: Adaptive boundary element methods. in: C.A. Brebbia, W.L. Wendland and G. Kuhn, eds., Boundary Elements 9, Vol. 1, 259–273. Springer Verlag Heidelberg 1987.
  • J. Saranen and W. L. Wendland, Local residual-type error estimates for adaptive boundary element methods on closed curves, Appl. Anal. 48 (1993), no. 1-4, 37–50. MR 1278122, DOI 10.1080/00036819308840148
  • I. H. Sloan and A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: theory, IMA J. Numer. Anal. 8 (1988), no. 1, 105–122. MR 967846, DOI 10.1093/imanum/8.1.105
  • E. P. Stephan and M. Suri, The $h$-$p$ version of the boundary element method on polygonal domains with quasiuniform meshes, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 6, 783–807 (English, with French summary). MR 1135993, DOI 10.1051/m2an/1991250607831
  • E.P. Stephan, W.L. Wendland: Remarks on Galerkin and least squares methods with finite elements for general elliptic problems. Manuscripta Geodaetica 1 (1976) 93–123.
  • W. L. Wendland, E. Stephan, and G. C. Hsiao, On the integral equation method for the plane mixed boundary value problem of the Laplacian, Math. Methods Appl. Sci. 1 (1979), no. 3, 265–321. MR 548943, DOI 10.1002/mma.1670010302
  • W. L. Wendland and De Hao Yu, Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math. 53 (1988), no. 5, 539–558. MR 954769, DOI 10.1007/BF01397551
  • W. L. Wendland and De Hao Yu, A posteriori local error estimates of boundary element methods with some pseudo-differential equations on closed curves, J. Comput. Math. 10 (1992), no. 3, 273–289. MR 1167929
Similar Articles
Additional Information
  • Carsten Carstensen
  • Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
  • Email: cc@numerik.uni-kiel.de
  • Received by editor(s): February 20, 1995
  • Received by editor(s) in revised form: November 6, 1995, and January 26, 1996
  • © Copyright 1997 American Mathematical Society
  • Journal: Math. Comp. 66 (1997), 139-155
  • MSC (1991): Primary 65N38, 65N15, 65R20, 45L10
  • DOI: https://doi.org/10.1090/S0025-5718-97-00790-4
  • MathSciNet review: 1372001