An analysis of a cell-vertex finite volume method for a parabolic convection-diffusion problem
HTML articles powered by AMS MathViewer
- by Wen Guo and Martin Stynes PDF
- Math. Comp. 66 (1997), 105-124 Request permission
Abstract:
We examine a cell-vertex finite volume method which is applied to a model parabolic convection-diffusion problem. By using techniques from finite element analysis, local errors away from all layers are obtained in a seminorm that is related to, but weaker than, the $L^2$ norm.References
- I. Babuška and J. Osborn, Analysis of finite element methods for second order boundary value problems using mesh dependent norms, Numer. Math. 34 (1980), no. 1, 41–62. MR 560793, DOI 10.1007/BF01463997
- H. Baumert, P. Braun, E. Glos, W. Müller and G. Stoyan, Modelling and computation of water quality problems in river networks, Lecture Notes in Control and Information Sciences, vol. 23, Springer, Berlin, 1981, pp. 482 – 491.
- W. Eckhaus and E. M. de Jager, Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type, Arch. Rational Mech. Anal. 23 (1966), 26–86. MR 206464, DOI 10.1007/BF00281135
- Richard E. Ewing (ed.), The mathematics of reservoir simulation, Frontiers in Applied Mathematics, vol. 1, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 770577, DOI 10.1137/1.9781611971071
- S.-Y. Hahn, An ‘upwind’ finite element method for electromagnetic field problems in moving media, Intern. J. Numer. Methods Engrg. 24 (1987), 2071 – 2086.
- M. Jakob, Heat transfer, Wiley, New York, 1959.
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
- J. A. Mackenzie and K. W. Morton, Finite volume solutions of convection-diffusion test problems, Math. Comp. 60 (1993), no. 201, 189–220. MR 1153168, DOI 10.1090/S0025-5718-1993-1153168-0
- K. W. Morton and M. Stynes, An analysis of the cell vertex method, RAIRO Modél. Math. Anal. Numér. 28 (1994), no. 6, 699–724. MR 1302420, DOI 10.1051/m2an/1994280606991
- K. W. Morton and E. Süli, Finite volume methods and their analysis, IMA J. Numer. Anal. 11 (1991), no. 2, 241–260. MR 1105229, DOI 10.1093/imanum/11.2.241
- Ali Hasan Nayfeh, Perturbation methods, Pure and Applied Mathematics, John Wiley & Sons, New York-London-Sydney, 1973. MR 0404788
- Robert E. O’Malley Jr., Singular perturbation methods for ordinary differential equations, Applied Mathematical Sciences, vol. 89, Springer-Verlag, New York, 1991. MR 1123483, DOI 10.1007/978-1-4612-0977-5
- D. W. Peaceman and H. H. Rachford, Numerical calculation of multi-dimensional miscible displacement, Soc. Petroleum Engrg. J. 24 (1962), 327 – 338.
- Harvey S. Price and Richard S. Varga, Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 74–94. MR 0266452
- Endre Süli, The accuracy of finite volume methods on distorted partitions, The mathematics of finite elements and applications, VII (Uxbridge, 1990) Academic Press, London, 1991, pp. 253–260. MR 1132503
- Endre Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes, Math. Comp. 59 (1992), no. 200, 359–382. MR 1134740, DOI 10.1090/S0025-5718-1992-1134740-X
- Milton Van Dyke, Perturbation methods in fluid mechanics, Annotated edition, Parabolic Press, Stanford, Calif., 1975. MR 0416240
- M. I. Višik and L. A. Ljusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Amer. Math. Soc. Transl. (2) 20 (1962), 239–364. MR 0136861
Additional Information
- Wen Guo
- Affiliation: Department of Mathematics, University College, Cork, Ireland
- Martin Stynes
- Affiliation: Department of Mathematics, University College, Cork, Ireland
- Email: stynes@ucc.ie
- Received by editor(s): August 23, 1993
- Received by editor(s) in revised form: February 22, 1995, and January 26, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp. 66 (1997), 105-124
- MSC (1991): Primary 65M60, 65M12; Secondary 76M25
- DOI: https://doi.org/10.1090/S0025-5718-97-00795-3
- MathSciNet review: 1372006