The remainder term for analytic functions of symmetric Gaussian quadratures
Author:
Thomas Schira
Journal:
Math. Comp. 66 (1997), 297-310
MSC (1991):
Primary 41A55; Secondary 65D30, 65D32
DOI:
https://doi.org/10.1090/S0025-5718-97-00798-9
MathSciNet review:
1372009
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For analytic functions the remainder term of Gaussian quadrature rules can be expressed as a contour integral with kernel $K_n$. In this paper the kernel is studied on elliptic contours for a great variety of symmetric weight functions including especially Gegenbauer weight functions. First a new series representation of the kernel is developed and analyzed. Then the location of the maximum modulus of the kernel on suitable ellipses is determined. Depending on the weight function the maximum modulus is attained at the intersection point of the ellipse with either the real or imaginary axis. Finally, a detailed discussion for some special weight functions is given.
- Helmut Brass, Quadraturverfahren, Vandenhoeck & Ruprecht, Göttingen, 1977 (German). Studia Mathematica, Skript 3. MR 0443305
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR 760629
- Géza Freud, Error estimates for Gauss-Jacobi quadrature formulae, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 113–121. MR 0341817
- Walter Gautschi, On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), 1991, pp. 209–226. MR 1113924, DOI https://doi.org/10.1216/rmjm/1181073004
- Walter Gautschi, Remainder estimates for analytic functions, Numerical integration (Bergen, 1991) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 357, Kluwer Acad. Publ., Dordrecht, 1992, pp. 133–145. MR 1198903
- Walter Gautschi and Shikang Li, The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules and with multiple end points, J. Comput. Appl. Math. 33 (1990), no. 3, 315–329. MR 1092121, DOI https://doi.org/10.1016/0377-0427%2890%2990055-5
- Walter Gautschi and Richard S. Varga, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal. 20 (1983), no. 6, 1170–1186. MR 723834, DOI https://doi.org/10.1137/0720087
- Walter Gautschi, E. Tychopoulos, and R. S. Varga, A note on the contour integral representation of the remainder term for a Gauss-Chebyshev quadrature rule, SIAM J. Numer. Anal. 27 (1990), no. 1, 219–224. MR 1034931, DOI https://doi.org/10.1137/0727015
- D.B. Hunter, Some error expansions for Gaussian quadrature, BIT 35 (1995), 64–82.
- F. Peherstorfer, On the remainder of Gaussian quadrature formulas for Bernstein-Szegő weight functions, Math. Comp. 60 (1993), no. 201, 317–325. MR 1153169, DOI https://doi.org/10.1090/S0025-5718-1993-1153169-2
- T. Schira, Ableitungsfreie Fehlerabschätzungen bei numerischer Integration holomorpher Funktionen, Ph.D. Dissertation, Universität Karlsruhe, 1994.
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517
Retrieve articles in Mathematics of Computation with MSC (1991): 41A55, 65D30, 65D32
Retrieve articles in all journals with MSC (1991): 41A55, 65D30, 65D32
Additional Information
Thomas Schira
Affiliation:
Institut für Praktische Mathematik, Universität Karlsruhe, D–76128 Karlsruhe, Germany
Email:
schira@math.uni-karlsruhe.de
Keywords:
Gaussian quadrature,
remainder term for analytic functions,
contour integral representation,
kernel function
Received by editor(s):
February 12, 1995
Received by editor(s) in revised form:
January 26, 1996
Article copyright:
© Copyright 1997
American Mathematical Society