A posteriori error estimate for the mixed finite element method
HTML articles powered by AMS MathViewer
- by Carsten Carstensen PDF
- Math. Comp. 66 (1997), 465-476 Request permission
Abstract:
A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,$\Omega$) $\times L^2(\Omega )$–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin-Marini elements.References
- D. Braess, R. Verfürth: A posteriori error estimators for the Raviart-Thomas element. Preprint 175/1994 Fakultät für Mathematik der Ruhr-Universität Bochum.
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
- K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Introduction to adaptive methods for differential equations. Acta Numerica (1995) 105—158.
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Band 116, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0161012, DOI 10.1007/978-3-642-46175-0
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177
- Serge Nicaise, Polygonal interface problems, Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], vol. 39, Verlag Peter D. Lang, Frankfurt am Main, 1993. MR 1236228
- R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner Skripten zur Numerik. B.G. Teubner Stuttgart 1996.
- R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 67–83. MR 1284252, DOI 10.1016/0377-0427(94)90290-9
- R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994), no. 206, 445–475. MR 1213837, DOI 10.1090/S0025-5718-1994-1213837-1
Additional Information
- Carsten Carstensen
- Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
- Email: cc@numerik.uni-kiel.de
- Received by editor(s): September 12, 1995
- Received by editor(s) in revised form: May 1, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp. 66 (1997), 465-476
- MSC (1991): Primary 65N30, 65R20, 73C50
- DOI: https://doi.org/10.1090/S0025-5718-97-00837-5
- MathSciNet review: 1408371