Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A posteriori error estimate for the mixed
finite element method

Author: Carsten Carstensen
Journal: Math. Comp. 66 (1997), 465-476
MSC (1991): Primary 65N30, 65R20, 73C50
MathSciNet review: 1408371
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A computable error bound for mixed finite element methods is established in the model case of the Poisson-problem to control the error in the H(div,$\Omega $) $\times L^2(\Omega )$-norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart-Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin-Marini elements.

References [Enhancements On Off] (What's this?)

  • [BV] D. Braess, R. Verfürth: A posteriori error estimators for the Raviart-Thomas element. Preprint 175/1994 Fakultät für Mathematik der Ruhr-Universität Bochum.
  • [BF] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205
  • [C] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • [Cl] Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
  • [EEHJ] K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Introduction to adaptive methods for differential equations. Acta Numerica (1995) 105-158. CMP 96:01
  • [G] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
  • [H] Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Bd. 116, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0161012
  • [LM] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR 0350177
  • [N] Serge Nicaise, Polygonal interface problems, Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], vol. 39, Verlag Peter D. Lang, Frankfurt am Main, 1993. MR 1236228
  • [V1] R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner Skripten zur Numerik. B.G. Teubner Stuttgart 1996.
  • [V2] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 67–83. MR 1284252,
  • [V3] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994), no. 206, 445–475. MR 1213837,

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (1991): 65N30, 65R20, 73C50

Retrieve articles in all journals with MSC (1991): 65N30, 65R20, 73C50

Additional Information

Carsten Carstensen
Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany

Keywords: Mixed finite element methods, a~posteriori error estimates, adaptive algorithm
Received by editor(s): September 12, 1995
Received by editor(s) in revised form: May 1, 1996
Article copyright: © Copyright 1997 American Mathematical Society